IZOLAČNÍ SYSTÉM SPODNÍCH STAVEB

FATRAFOL-H

KONSTRUKČNÍ A TECHNOLOGICKÝ PŘEDPIS

pro aplikaci

izolačních fólií ve spodních částech staveb proti vodě, některým kapalinám a radonu
OBSAH

1. ROZSAH UPLATNĚNÍ A CHARAKTERISTIKA SYSTÉMU FATRAFOL-H.................................7
2. HLAVNÍ PRINCIPY NAVRHOVÁNÍ IZOLACÍ PROTI VODĚ A KAPALINÁM.........................8
 2.1 HLAVNÍ VÝCHOZÍ PODKLADY...8
 2.2 HYDROFYZIKÁLNÍ NAMÁHÁNÍ HYDROIZOLACE...8
 2.3 HLAVNÍ ZÁSADY PRO NAVRHOVÁNÍ A PROVÁDĚNÍ IZOLACÍ STAVEB V SYSTÉMU FATRAFOL-H...9
 2.3.1 Dimenzování fóliového povlaku podle hydrofyzikálního namáhání.............................9
 2.3.1.1 Namáhání vlhkostí původního prostředí (zemní vlhkost)...9
 2.3.1.2 Namáhání vodou stěhující po povrchu konstrukce a prosakující horninovým prostředím.................................9
 2.3.1.3 Namáhání tlakovou vodou ..9
 2.3.2 Návrh izolační fólie podle typu chemických a korozních vlivů prostředí9
 2.3.3 Požadavky na úpravu izolačního fóliového soustavy podle charakteru mechanického namáhání..13
 2.3.3.1 Namáhání objemovými změnami a dilatačními pohyby sousedních vrstev stavebních konstrukcí...13
 2.3.3.2 Namáhání následnými stavebními procesy (pracemi)..13
 2.4 PROVÁDĚNÍ IZOLACE PROTI NĚKTERÝM KAPALINÁM..13
3. IZOLAČNÍ SYSTÉM FATRAFOL-H JAKO OCHRANA STAVEB PROTI PRONIKÁNÍ RADONU Z PODLOŽÍ...14
 3.1 PŮVOD RADONU V PODLOŽÍ..14
 3.2 LEGISLATIVNÍ POŽADAVKY...14
 3.3 NAVRHOVÁNÍ A POSUZOVÁNÍ PROTIRADONOVÝCH IZOLACÍ..14
 3.3.1 Součinitel „D“ Radonu ve zvolené fólii..15
 3.3.2 Koncentrace radonu v podloží a stupeň propustnosti základové zeminy pro plyny..................15
 3.3.3 Výběr kritických - posuzovaných místností stavby...16
 3.3.4 Výpočet a závěry..16
4. MATERIÁLY...16
 4.1 IZOLAČNÍ FÓLIE...16
 4.1.1 Izolační fólie z pvc-p..16
 4.1.1.1 Hydroizolační fólie z PVC-P FATRAFOL 803...17
 4.1.1.2 Izolační fólie z PVC-P EKOPLAST 806...17
 4.1.1.3 Izolační fólie z PVC-P STAFOL 914 ...17
 4.1.2 Izolační fólie z polyolefinů...19
 4.1.2.1 Izolační fólie z PE-HD..19
 4.1.2.1.1 Izolační fólie z PE-HD EKOTEN 915...19
 4.1.2.2 Izolační fólie z modifikovaných polyolefinů...19
 4.1.2.2.1 Hydroizolační fólie FATRAFOL P 793..22
 4.1.2.2.2 Hydroizolační fólie FATRAFOL P 917..22
 4.1.3 Ochranné a drenážní fólie..21
 4.1.3.1 Profilované fólie TECHNODREN 0815 Z1 A 2015 Z2..22
 4.1.3.2 Profilovaná fólie TECHNODREN 0815 R1..22
 4.2 DOPLŇKOVÉ IZOLAČNÍ MATERIÁLY..22
 4.2.1 KUŽEL druhy 10..23
 4.2.2 VLNOVEC druhy 11..23
 4.2.3 ZÁPLATA druhy 12..23

FATRAFOL-H
Izolace spodních částí staveb
12/2004
4.2.4 Limec PVC-P druh 13...23
4.2.5 Polyuretanový tmel...24
4.2.6 Kout z PE-HD druh 17...24
4.2.7 Svařovací drát z PE-HD druh 1050.................................24
4.2.8 Zářivková hmota Z-01...25
4.2.9 Ředidlo L-494...25
4.2.10 Profil NOVOPLAST druh 1863 - č.h. 1557.......................25
4.3 POMOCNÉ MATERIÁLY..26
4.3.1 Ochranné textilie..26
4.3.2 Profily NOVODUR druh 1214...26
4.3.3 Kompletační prvky pro fólie TECHNODREN..................27
4.3.3.1 Přechodka prům. 150..27
4.3.3.2 Přechodka prům. 200..27
4.3.3.3 Koutová tvarovka...28
4.3.3.4 Odvětvovací lišta...28
4.3.4 Úchytné prvky z poplastovaného plechu.......................28
4.3.5 Kotvící prvky...29
4.3.5.1 Rozpěrný nýt..29
4.3.5.2 Nýt trubkový..29
4.3.6 Roznášecí podložky...29
5. KONSTRUKČNÍ USPOŘÁDÁNÍ IZOLAČNÍHO POVLAKU........30
5.1 HLAVNÍ KONSTRUKČNÍ ZÁSADY...30
5.2 DETAILY KONSTRUKČNÍHO ŘEŠENÍ..................................30
5.2.1 Podkladní vrstva..30
5.2.2 Dimenzování izolačního povlaku.................................30
5.2.3 Kotvení izolačního povlaku k podkladu.......................31
5.2.4 Zesílení koutů a hran..31
5.2.5 Etapová napojení izolace..32
5.2.6 Ukončení izolačního povlaku......................................32
5.2.7 Prostupy izolaci..32
5.2.8 Pilatační spáry...32
5.2.9 Ochranná vrstva..33
6. POSTUP PŘEDVÝROBNÍ TECHNICKÉ PŘÍPRAVY AKCE....33
7. TECHNOLOGICKÉ POSTUPEY...33
7.1 VNĚŠÍ PODMÍNKY PROVÁDĚNÍ IZOLAČNÍCH PRAČÍ......34
7.2 ÚPRAVA PODKLADNÍCH VRSTEV..................................34
7.3 KLAĐENÍ TEXTILNÍCH VRSTEV......................................34
7.4 MONTÁŽ LINIOVÝCH ÚCHYTNÝCH PRVKŮ SVISLÉ IZOLACE.34
7.4.1 Montáž liniových úchytných prvků.............................34
7.4.2 Montáž bodových úchytných prvků.............................35
7.5 KLAĎENÍ ŘÍZENÍ FÓLIE...35
7.6 SPOJOVÁNÍ IZOLAČNÍCH FÓLIÍ..35
7.6.1 Konstrukce spojů..35
7.6.2 Provádění spojů..36
7.6.2.1 Spojovalení fólií z PVC-P..36
7.6.2.1.1 Spojovalení horkým vzduchem...........................36
7.6.2.1.2 Spojovalení pomocí tetrahydrofuranu..............36
7.6.2.1.3 Pojištění spoje pojistnou zářivkou...............36
7.6.2.2 Spojovalení fólií z PE-HD.......................................37
7.6.2.2.1 Spojovalení horkým klinem...............................37
7.6.2.2.1.1 Spojovalení extruzivním svařováním...........37
7.6.2.3 Spojovalení fólií z modifikovaných PO................37
7.6.2.3.1 Vlastní spojovalení fólií.................................37
7.6.2.3.2 Napojování fólií na jiné polylefinické materiály.................................38
7.6.2.4 Spojování profilovaných fólií...38
7.6.2.4.1 Spojování volným přesahem...38
7.6.2.4.2 Spojování samolepící páskou..38
7.6.2.4.3 Spojování za použití tmelu...38
7.6.3 Staveništní zkoušky kvality spojů...38
7.6.3.1 Vnější kvalita spojů...38
7.6.3.2 Zkoušení vodotěsnosti spojů...39
7.6.3.2.1 Vakuová zkouška spojů provedených přeplátováním bez zkušebního kanálu.................................39
7.6.3.2.2 Tlaková zkouška spojů provedených přeplátováním se zkušebním kanálem..39
7.6.4 Vyhodnocení výsledků zkoušek..39
7.7 OPRACOVÁNÍ DETAILŮ...39
7.7.1 Vyztužení izolace...39
7.7.2 Vyztužení a dotěsnění koutů, rohů a nároží...39
7.7.3 Provádění prostupů..40
7.7.3.1 Prostupy izolací fóliemi z PVC-P...40
7.7.3.1.1 Prostupy z PVC potrubí...40
7.7.3.1.2 Prostupy z materiálu jiného než PVC (ocel, litina, keramika apod.)...40
7.7.3.1.3 Prostupy řešené pomocí pevné a volné příruby............................40
7.7.3.1.4 Prostupy řešené pomocí plášťové trouby..40
7.7.3.1.5 Prostupy ocelové vyztužení...40
7.7.3.2 Prostupy izolaci fóliemi z PE-HD..40
7.7.3.2.1 Prostupy z PE-HD potrubí...40
7.7.3.2.2 Prostupy z různorodých materiálů..41
7.7.3.3 Prostupy izolaci fóliemi z modifikovaných polylefinů........................41
7.7.3.3.1 Prostupy z PE-HD potrubí...41
7.7.3.3.2 Prostupy z jiného materiálu než PE-HD.......................................41
7.8 UKONČEČNÍ IZOLACE NAD TERÉNEM...41
7.9 OPRACOVÁNÍ SVĚTLÍKU NA SUTERÉNNÍM ZDIVU.................................41
7.10 ETAPOVÁ NAPOJENÍ..41
7.11 ŘEŠENÍ DILATAČNÍ SPÁRY..41
7.12 OPRAVY POŠKOZENÝCH IZOLACÍ..42
7.13 IZOLAČNÍ POVLAKY S AKTIVNÍM KONTROLNÍM SYSTÉMEM..................42
7.13.1 Zásady provádění dvouvrstvých hydroizolací.....................................42
7.13.2 Základní skladba dvouvrstvého systému..42
7.13.3 Zkoušení těsnosti jednotlivých sektorů..42
7.14 POKLÁDÁNÍ PROFIOLOVANÝCH FÓLIÍ..43
7.14.1.1 Pokládání fólie na vodorovných plochách.......................................43
7.14.1.2 Pokládání fólie na svislých plochách...43
8. ZPŮSOBLOST PRACOVNÍ ČETY IZOLATÉRŮ...43
8.1 ODBORNÁ ZPŮSOBLOST...43
8.2 DOPoruČENÉ VÝBAVENÍ PRACOVNÍ ČETY...43
9. BEZPEČNOST PRÁCE A OCHRANA ZDRAVÍ..44
10. ZÁSADY KONSTRUKČNÍHO ŘEŠENÍ CHARAKTERISTICKÝCH DETAILŮ 48
10.1 PŘEHLED DETAILŮ...48
10.2 LEGENDA..48
1. ROZSAH UPLATNĚNÍ

Izolační systém FATRAFOL-H je určen pro oboustranně zabudované fóliové izolační povlaky staveb proti zemní vlhkosti, podpovrchové a podzemní vodě, některým kapalinám a radonu. Je určen pro vytváření povlakových izolací všech typů spodních částí staveb obytných, veřejných, správních, průmyslových, zemědělských, sportovních apod. Vhodný je téměř do všech typů prostředí s různým stupněm biologické i chemické agresivity a s trvalými teplotami v minimálním rozsahu od -20 °C do +40 °C. Univerzálnost systému FATRAFOL-H je založena na široké variabilnosti pro různá uplatnění a vzájemnou kompatibilitou materiálů vytvořených na jednotné bázi, která umožňuje pro různé úseky stavby vzájemně kombinovat a napojovat izolační materiály s nejvýhodnějšími vlastnostmi pro dané prostředí.

Základním materiálem izolačního systému FATRAFOL-H jsou izolační fólie na materiálové bázi:

a) PVC-P
 ■ FATRAFOL 803 - pro izolace staveb proti agresivní tlakové a prosakující vodě a proti pronikání kapalin a výluhů do spodních vod.
 ■ EKOPLAST 806 - pro izolace staveb proti vybraným ropným produktům.
 ■ STAFOL 914 - k izolacím staveb proti zemní vlhkosti.

b) PE-HD
 ■ EKOTEN 915 - pro izolace staveb proti vodě, proti pronikání kapalin, výluhů a ropných produktů včetně benzinu do spodních vod.

c) modifikované polyolefiny
 ■ FATRAFOL P 793 - pro izolace staveb proti vodě, včetně vody tlakové a agresivní a proti pronikání kapalin a výluhů do spodních vod.
 ■ FATRAFOL P 917 - k izolacím částí staveb přicházejících do styku s pitnou vodou.

d) profilované fólie
 ■ TECHNODREN 0815 Z1 - ochranná a separační vrstva, k odvětrání vlhkostí.
 ■ TECHNODREN 2015 Z2 - ochranná a separační vrstva, k odvětrání vlhkostí.
 ■ TECHNODREN 0815 R1 - přídavné protiradonové opatření při vysokém radonovém riziku.

Izolační povlaky ze všech těchto fólií zároveň plní i funkci protiradonové bariéry.

Izolační fólie systému FATRAFOL-H nesmějí být tvräge v ystaveny přírmým účinkům slunečního záření, chemickému působení mimo rozsah odolnosti jednot-

SYSTÉMU FATRAFOL-H

livých typů fólií, mechanickému namáhání tlakem a tahem většímu než 7 MPa. Dále je nutno vhodným konstruktivním řešením omezit jejich izolaci v střihu.

Kromě vlastností izolačních fólií a doplňkových prvků systému FATRAFOL-H uvádí tento konstrukční a technologický předpis i technologické zásady a podmínky jejich zabudování do stavebních konstrukcí a zásady návrhu izolační ochrany stavby. Výchozími podklady tohoto předpisu jsou nejen dlouhodobé zkušenosti výrobce a specializovaných aplikačních firem a platné příslušné státní normy, zejména ČSN P 73 0600 „Hydroizolace staveb - Základní ustanovení“, ČSN P 73 0606 „Hydroizolace staveb - Povlakové hydroizolace - Základní ustanovení“ ČSN 73 0601 „Ochrana staveb proti radonu z podloží“, ČSN 73 1001 „Zakládání staveb. Základová půda pod plošnými základy“ a další příslušné související technické podklady.

Všechny fólie systému FATRAFOL-H splňují technické požadavky na stavební výrobky podle nařízení vlády č. 163/2002 Sb., kterým se mění nařízení vlády č. 178/1997 Sb. a mají v souladu s § 13 zákona č. 22/1997 Sb. o technických požadavcích na výrobky a o změně a doplnění některých zákonů vystaveno prohlášení o shodě.

Systém řízení kvality pro vývoj a výrobu izolačních fólií ve firmě Fatra Napajedla byl certifikován certifikační organizací Lloyd’s Register Quality Assurance podle mezinárodních norem řady ISO 9001. Dokladem o ochraně životního prostředí a dodržování zásad environmentálního managementu při vývoji a výrobě izolačních fólií je certifikát vydaný organizací LRQA podle normy EN ISO 14001.
2. HLAVNÍ PRINCIPY NAHRHOVÁNÍ IZOLACÍ PROTI VODĚ A KAPALINÁM

2.1 HLAVNÍ VÝCHOZÍ PODKLADY

- informace a údaje Hydrometeorologického ústavu;
- informace vodohospodářských orgánů;
- informace starousedlíků (vše ke zjištění rozsahu a úrovně 50-ti leté a 100-leté, tj. maximální hladiny podzemní vody);
- hydrogeologický průzkum (pro stanovení struktury, charakteru a vlastností vrstev základových zemin a podzemní vody);
- stanovení charakteru hydrofyzikálního namáhání hydroizolace;
- konstrukční a hmotové řešení základových suterénních, případně podlahových konstrukcí objektu a jeho dilatací;
- řešení provedení a stabilizace výkopové jámy;
- charakter a hloubka založení sousedních objektů.

2.2 HYDROFYZIKÁLNÍ NAMÁHÁNÍ HYDROIZOLACE

Stavby jsou namáhány vodou, vyskytující se v různorodých formách v přírodě i ve stavbě, v míře závislé na situování objektů v krajině, osazení v terénu, provozu uvnitř i vně objektů i způsobu realizace staveb apod.

Podle ČSN P 73 0600 různé formy výskytu vody v přírodě i ve stavbě charakterizují některé společné prvky hydrofyzikální expozice, kterou pak rozdělujeme do následujících kategorií:

- namáhání vodou v plynném skupenství (vodní parou)
 - vzniká v důsledku koncentrace vodní páry ve vzduchu; projevuje se sorpční vlhkostí materiálů;
 - vzniká v důsledku různých parciálních tlaků vodní páry na površe konstrukcí, následkem toho dochází k difúzi a může vést k následné kondenzaci vodní páry v konstrukcích;
 - vzniká v důsledku výparu vlhkosti z povrchu vlhkých stavebních konstrukcí, v uzavřených prostorách budov dochází ke zvýšení vlhkosti vnitřního vzduchu;
 - vzniká působením tlaku vodní páry, vyvíjeném vzestupem teploty vlhkých stavebních materiálů v uzavřené materiálové struktuře nebo v konstrukci.

- namáhání vlhkostí
 - vzniká, působí-li na stavební konstrukci voda, šířící se v přilehlém pórovitém horninovém prostředí nebo ve stavebních materiálech popř. šířící se z povrchu konstrukcí působením kapalných sil, vypařováním a kondenzací v kapalných systémech, a to všemi směry i proti směru gravitace a přes rozhraní vrstev;
 - vzniká v důsledku poklesu povrchové teploty konstrukcí pod rosný bod.

Poznámka:
Intenzita namáhání vlhkosti závisí především na druhu a umístění zdroje vlhkosti, působivosti materiálů a fyzikálních vlastností působící vody.

- namáhání vodou stékající po povrchu konstrukcí
 - vzniká, působí-li na svislé či sklonité stavební konstrukce voda v kapalném skupenství, namáhání vodou stékající po povrchu, aniž by se kdekoliv v kontaktu se stavební konstrukcí hromadila a vytvářela horizontální spojitou hladinu;

Poznámka:
Podle zdroje působící vody může být hydrofyzikální namáhání zvýšeno hydrodynamickými vlivy, tlakem větru apod.; např. u srážkové vody - větrem hnaného deště, nebo u provozní vody - směrovým proudem vody. K této okolnostem je nutno při dimenzování hydroizolačních konstrukcí přihlédnout.

- namáhání vodou prosakující přilehlým pórovitým prostředím
 - vzniká, působí-li na stavební konstrukce voda v kapalném skupenství, prosakující vlivem gravitace okolním pórovitým prostředím nebo částí stavební konstrukce, např. ochranními souvrstvími povlakových hydroizolací střešních teras, podlah a obkladů v mokrých provozech apod.; v okolí hydroizolačních konstrukcí se může voda dočasně místně hromadit a působit na ně malým hydrostatickým tlakem;

- namáhání tlakovou vodou
 - vzniká, působí-li na stavební konstrukce voda v kapalném skupenství definovaným hydrostatickým nebo hydrodynamickým tlakem; pod úrovní hladiny se tlak ve vodě šíří všemi směry, v pórovitých strukturách se vytváří hydraulicky spojitá hladina;

- namáhání vodou v pevném skupenství
 - vzniká, působí-li na konstrukci voda ve formě sněhu, ledu či námrazy, nebo se v konstrukci, popř. jejím okolím, mění její skupenství z kapalného nebo plynného na pevné;
2.3 HLAVNÍ ZÁSADY PRO NAVRHOVÁNÍ A PROVÁDĚNÍ IZOLACI STAVEB V SYSTÉMU FATRAFOL-H

2.3.1 DIMENZOVÁNÍ FÓLIOVOHO POVLAKU PODLE HYDROFYZIKÁLNÍHO NAMÁHÁNÍ

2.3.1.1 Namáhání vlhkostí pórovitého prostředí (zemní vlhkost)

Hydroizolační souvrství musí být umístěno a provedeno tak, aby zabránilo v každém místě přenosu vlhkostí ze základové zeminy do obvodových konstrukcí chráněného objektu. Pro toto hydrofyzikální namáhání lze použít povlak z jedné vrstvy hydroizolační fólie o tloušťce 0,6 mm, ale jestliže se nejedná o dočasné stavby, doporučuje se minimální tloušťka fólie 0,8 mm. Fóliovou izolaci se doporučuje oboustranně plnoplošně chránit technickou textilií ze syntetických vláken.

Za předpokladu pevného podkladu mohou požadovanou hydroizolační účinnost zajistit pro tento typ namáhání i hydroizolační pásy kladené bez vodotěsného spoje se vzájemným přesahem minimálně 100 mm.

2.3.1.2 Namáhání vodou stékající po povrchu konstrukcí a prosakující horninovým prostředím

Provedení a umístění hydroizolačního souvrství musí zabránit v každém místě chráněných konstrukcí jakémukoli kontaktu se stékající vodou. Je nutno použít povlak z jedné vrstvy hydroizolační fólie o minimální tloušťce 1,0 mm. Zabudovaný fóliový povlak je nutno oboustranně plnoplošně chránit technickou textilií ze syntetických vláken.

Tuto kategorii hydroizolace nelze uvažovat tam, kde není možno zajistit volný odtok vody mimo objekt a nelze ji použít ani v prostředí málo propustných či nepropustných zemin, kde je součinitel propustnosti zeminy K menší než 1×10^{-4} m.s$^{-1}$.

2.3.1.3 Namáhání tlakovou vodou

Provedení a umístění hydroizolačního souvrství musí zabránit v každém místě chráněných jakémukoli kontaktu s tlakovou podzemní vodou a ve všech průchodech jakémukoliv jejímu průniku do chráněných prostorů. Je nutno použít povlak z jedné vrstvy hydroizolační fólie o signální vrstvě o minimální tloušťce 1,5 mm. Fóliová vrstva musí být oboustranně plnoplošně chráněna technickou textilií ze syntetických vláken.

Hydroizolační bezpečnost lze zvýšit použitím povlaku ze dvou vrstev izolační fólie o minimálních tloušťkách 1,5 mm, se zabudovaným aktivním kontrolním a sanačním systémem (článek 7.13). Dále lze hydroizolační bezpečnost zvýšit v obou případech jejich kombinací se stavebními konstrukcemi z vodotěsného betonu.

Tuto kategorii hydroizolace je nutno použít:

- v případě propustných základových zemin tehdy, jestliže maximální hladina podzemní vody je výše než úroveň podlahy chráněného prostoru. Horní okraj hydroizolačního povlaku pro kategorii namáhání tlakovou vodou musí být nejméně 300 mm nad maximální úrovní podzemní vody (bezpečnostní úsek). Dále pak až do úrovně méně 300 mm nad přílehlým terénem je nutno provést hydroizolační povlak o dimenzi alespoň jako pro kategorii namáhání vlhkostí pórovitého prostředí.

- v případě málo propustných nebo nepropustných základových zemin ($K < 1 \times 10^{-4}$ m.s$^{-1}$) vždy, když hydrogeologický průzkum nebyla zjištěna podzemní voda a pokud není navržena plošná nebo trubní drenáž zařízení vodotěsného prostoru. Horní okraj hydroizolačního povlaku musí být minimálně 300 mm nad úrovní okolního upraveného terénu chráněného objektu.

2.3.2 NÁVRH IZOLAČNÍ FÓLIE PODLE TYPU CHEMICKÝCH A KOROZNÍCH VLIVŮ PROSTŘEDÍ

Všechny izolační fólie systému FATRAFOL-H vhodně k výborné chemické odolnosti vůči běžně se v přírodě vyskytujícím podpovrchovým i povrchovým vodám bez rozdílu pH, stupně a typu agresivity a množství minerálů v ní rozpuštěných, jsou narozenou mezí tří typů fólií.

Některé vybrané druhy fólií mají své materiálové složení upraveno s ohledem na jejich konkrétní užití tak, aby po své chemické stránce odpovídal chemickému vyzadování, pro které byly vyvinuty (fólie FATRAFOL 803 pro styk s produkty živočišného metabolismu, anorganickými kyselinami, zásadami a jejich solemi; fólie EKOPLAST 806 pro styk s alifatickými uhlovodíky jako benzín, nafta, minerální oleje apod.; fólie EKOTEN 915 s látkami vyskytujícími se v skládkách odpadů, anorganickými kyselinami, zásadami a jejich solemi, s vybranými organickými rozpouštědly a ropnými produkty včetně benzínu, olejů apod.).

Přehled zde uvedených látek není úplný, jedná se o výběr nejčastěji se vyskytujících sloučenin, kterým jednotlivé fólie po chemické stránce odolávají dlouhodobě, omezeně nebo jim neodolávají.
Při návrhu izolačního materiálu pro jednotlivé aplikace je nutno brát do úvahy, že izolační materiál není většinou s příslušnou látkou v dlouhodobém a trvalém kontaktu nebo často se v daném prostředí vyskytují látky v takové koncentraci, která již není pro daný fóliový materiál nebezpečná. Z tohoto důvodu je nutno přístupovat ke každému návrhu izolace do agresivního prostředí individuálně, posuzovat reálnost přímého kontaktu izolačního materiálu s danou látkou v její koncentrované podobě a dlouhodobost jejího výskytu v oblasti izolačního souvrství, tak jako možnost lokálního zvýšení teplot z důvodu např. probíhajících chemických reakcí, které mohou mít na izolační materiál negativní důsledky (se zvyšující se teplotou obecně klesá chemická odolnost materiálů). V každém sporném případě nebo při výskytu látek neuvedených v tomto seznamu je možno kontaktovat výrobce, který je schopen tyto případy posoudit a případně navrhovat vhodné řešení. Za tím účelem je nezbytné nutné vyžádat si od objednatele izolačního řešení závaznou specifikaci daného korozního prostředí s jeho chemickou klasifikací.

<table>
<thead>
<tr>
<th>Úroveň chemické odolnosti:</th>
<th>1 - odolává dlouhodobě</th>
<th>2 - omezená životnost</th>
<th>3 - nepoužitelný</th>
</tr>
</thead>
<tbody>
<tr>
<td>asfalt</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>amoniak</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>acetaldehyd</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>aceton</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>allylalkohol</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>hydroxid ammoný</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>anilin</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>benzen</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>benzin</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>borax</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>brom</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>butylacetat</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>cyklohexanon</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>cyklohexanol</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>dibutylftalát</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>dichlorethelylen</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>dehet</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ducičnany</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>dusitaney</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ethylacetát</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ethylalcohol</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ethylbenzen</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ethylenglykol</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>fenol</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>fermež</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>fluord</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>fosforečnany</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>propantriol</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>heptan</td>
<td>2</td>
<td>1-2</td>
<td>1-2</td>
</tr>
<tr>
<td>hexachlorethan</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>hexamethylentetramin</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>hydrochinon</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>hydroxid draselný</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>hydroxid sodný</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>chlorbenzen</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>chloréčnany</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>chloridy</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>chorlstaný</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>chlornany</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>chloroforform</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>KOROZNÍ PROSTŘEDÍ</td>
<td>Přehled chemické odolnosti izolační fólie z PE-HD EKOTEN 915 při 20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>asfalt</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetaldehyd</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetanhydrid</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aceton</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetonitril</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetylchlorid</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>akrylonitril</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alkyllakohol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>amylacetát</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylnitrit</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anilin</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anisol</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzdaldehyd</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzen</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzin</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzylalkohol</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzylchlorid</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>borax</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>brom kapalný</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzoan sodný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>butylacetát</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>butylalkohol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>butylenglykol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>butylester kyseliny glykolové</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyklohexan</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyklohexanol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyklohexanon</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>čpavek kapalný i plynný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dekalin</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dibutyleter</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dibutylftlátil</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dietylter</td>
<td>1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-dichlorbenzen</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-dichlorbenzen</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dichlorethlen</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disobutylkleton</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disipropyleter</td>
<td>1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimetylamín</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimetylformalmid</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimetylsulfoxid</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dioxan</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dusičnany</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>emulgátory</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epichlorhydrin</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etylacetát</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etylalkohol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etylbenzen</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etylendichlorid</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etylenglykol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etylester kyseliny monochloroctové</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fluor</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>formaldehyd 40 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fosforečnany</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fotografická vývojka</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>furylalkohol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glycerin</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glykol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydrazinhydrát</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydrosiřičitan sodný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydroxid draselný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydroxid sodný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlor kapalný</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlor plynný</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chloralhydrát</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorbenzen</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chloridy</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorid uhlíčitý</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorowny</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chloroform</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chlorovodík</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isooxtan</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isopropylalkohol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jodová tintura</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kamenec hlinitodraselný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ketony</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kresol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>křemičitany</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyanidy</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina benzensulfonová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina benzooavá</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina boritá</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina bromovodíková</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina citronová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina dichlorocová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina dusičná 25 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina dusičná 50 %</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina etylendiamintetraoctová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina fluorovodíková 70 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina fluorokřemičitá</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina fosforečná</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina ftalová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina glykolová 70 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina chloristá 70 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina chlorovodíková</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina chlorosulfonová</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina chromová 80 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyseliny karbonové aromatické</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina jantarová 50 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabulka II - pokračování: Přehled chemické odolnosti izolační fólie EKOTEN 915 při 20 °C

<table>
<thead>
<tr>
<th>KOROZNÍ PROSTŘEDÍ</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>kyselina křemičitá</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina kyanovodíková 50 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina maleinová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina mléčná</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyseliny mastné</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina máselná</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina monochloroctová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina mravenčí</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina octová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina propionová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina sírová 0-98 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina siřičitá</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina stearová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina trichloroctová 90 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina vinná</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kyselina šťavelová</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lučavka královská</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lůj</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>manganesan draselný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>melasa</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mentol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metylalkohol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metylcyklohexan</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metylchlorid</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metylester kyseliny dichloroctové</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metylester kyseliny monochloroctové</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metyletylketon</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metylglykol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-metyl-2-pentanol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metoxybutylalkohol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>močovina</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>morfolin</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>motorová nafta</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>naftalen</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitrobenzen</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>o-nitrotoluén</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitrosmín</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej hydraulický</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej kokosový, kukuřičný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej lněný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej minerální</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej motorový</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej parafínový</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oleje rostlinné a živočišné</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej silikonový</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej terpentínový</td>
<td>1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej topný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej transformátorový</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olej vřetenový</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oleum</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ovocné šťávy</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxid fosforečný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxid sirový</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxid siřičitý</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxychlorid fosforečný</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>petroleter</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>petrolej</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peroxid vodíku</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pivo</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>polyglykoly</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>povídla</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>propylenglykol</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pyridin</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ropa</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rtuť</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sulfurylchlorid</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sirany</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sirnatany</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sirniky</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sirovíhlik</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sirovodík</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tetrabrometan</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tetrachloretan</td>
<td>1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tetralinhydrufuran</td>
<td>1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tetralin</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiofen</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thionychlorid</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tributylfósť</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trietanolamin</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trichloretilen</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trikresylfósť</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>toluen</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uhličitan</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vazelina</td>
<td>1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>včeli vosk</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>voda mořská</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-xylén</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>želatina</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Úroveň chemické odolnosti:

1 - odolává dlouhodobě
2 - omezená životnost
3 - nepoužitelný
2.3.3 POŽADAVKY NA ÚPRAVU IZOLAČNÍHO FÓLIOVÉHO SOUVRSTVÍ PODLE CHARAKTERU MECHANICKÉHO NAMÁHÁNÍ

2.3.3.1 Namáhání objemovými změnami a dilatačními pohyby sousedních vrstev stavebních konstrukcí

V místech koutů, rohů a hran nelze zcela vyloučit poruchy navazujících konstrukcí, neboť jsou to zpravidla oblasti pracovní spár a tedy místa, jejichž pevnost i celková objemová i strukturní stabilita je nejvíce závislá na technologické kázni, kvalifikaci i zodpovědnosti lidského činitele. Proto je zde potřebné pojistit bezpečnost systému zesílením izolačního povlaku (viz odstavec 3.2.4).

V místech dilatačních spár navazujících konstrukcí se vzájemně rozdílné pohyby konstrukcí přímo předpokládají, či očekávají. Proto je i zde třeba provést úpravu hydroizolačního povlaku (viz odstavec 3.2.8).

2.3.3.2 Namáhání následnými stavebními procesy (pracemi)

Fóliový (hydro)izolační povlak je v podstatě izolací jednovrstvou, o tloušťce řádově 1÷2 mm. Proto je nutno věnovat zvýšené úsilí jeho trvalé ochraně před mechanickým poškozením následnými pracovními procesy a technologiemi. Praxe prokázala, že největší potencionální nebezpečí hrozí v tomto smyslu od následného provádění přilehlých železobetonových konstrukcí a u fóliových povlaků, prováděných ve výkopech z vnější strany suterénů a podzemních stavb, bez izolačního přizdívky, pak od prováděných zásypů.

Pasivní ochrana

Po kontrole těsnosti fóliového povlaku a jeho přezkoumání investorem (objednatelem) je nutné jeho okamžitě plnoplošně a stabilizováno překrytí:

- na svísných plochách rubový povrch technickou syntetickou textilií o plošné hmotnosti minimálně 300 g.m⁻², licový povrch syntetickou textilií o plošné hmotnosti minimálně 800 g.m⁻² nebo technickou syntetickou textilií o plošné hmotnosti minimálně 300 g.m⁻² s profilovanou fólií (se suchým podélným přesahem přes dvě řady nopků) anebo s jinou masivní mechanickou ochranou (ochraná izolační přizdívka apod.);
- na vodorovných plochách technickou textilií ze syntetických vláken o plošné hmotnosti minimálně 300 g.m⁻² a vrstvou cementového potěru tloušťky minimálně 50 mm (u izolace fólií EKOTEN minimálně 100 mm), obousměrně dilatovaného (max. 3x3 m);

Aktivní ochrana

Zajištěním trvalého dozoru nad předaným izolačním povlakem, a to až do provedení následných přilehlých stavebních konstrukcí a zásypů! Toto opatření je důležité zejména při následném provádění armatury, bednění a následně betonáže.

Při zjištění poškození fóliového izolačního povlaku, nebo i při podezření na poškození je nutný okamžitý protokolární záznam za osobní účasti a potvrzení zplnomocněného zástupce investora a objednatele izolačních prací a okamžitá oprava poškozené části izolačního povlaku s přezkoumáním těsnosti.

2.4 PROVÁDĚNÍ IZOLACE PROTI NĚKTERÝM KAPALINÁM

Ochrana stavebního díla proti některým kapalinám je ve své podstatě zobecněním zásad provádění hydroizolací a zahrnuje:

a) vnější ochranu staveb proti výluhům ze stavebních materiálů nebo podložních vrstev terénu,

- roztokům kyselin, zásad a jejich solí,
- organickým uhlovodíkům (benzín, nafta, oleje ...),
- alkoholům, ketonům, esterům a jejich roztokům.

b) vnitřní ochranu staveb (proti úniku látek z technologií) proti:

- roztokům kyselin, zásad a jejich solí,

Provedení izolací proti kapalinám se řídí obdobnými zásadami jako provádění hydroizolací, specifika jsou dána nutností užití izolačních materiálů, pomocných a doplňkových prvků chemicky odolných danému prostředí (viz dále).
3. IZOLAČNÍ SYSTÉM FATRAFOL-H JAKO OCHRANA STAVEB PROTI PRONIKÁNÍ RADONU Z PODLOŽÍ

3.1 PŮVOD RADONU V PODLOŽÍ

Radon (chemická značka Rn) je inertní přírodní radioaktivní plyn bez barvy, chuti i zápachu. Je to jeden z produktů uran-radiové rozpadové řady. Vzhledem k tomu, že uran se vyskytuje stopově ve všech horninách, je radon přítomen v různých koncentracích prakticky ve všech základových zeminách stavebních pozemků. Ze struktury hornin v podzáklaďe se radon neustále uvolňuje a proniká do vnějšího prostředí, anebo při přílehlými (kontaktními) vodorovnými i svislými sutěrénami konstrukcemi stavby, do jejích vnějších prostorů. Radon jako každý jiný plyn proniká dvojím způsobem:

a) difúzí kapilární strukturou stavebního materiálu
b) konvekcí spárami a trhlinami stavebních konstrukcí

Škodlivost dlouhodobého působení radonu na lidský organismus je známa již dlouho, ale teprve v posledních letech se stala tato skutečnost závažnou. Vzhledem k energetické krizi obvodové konstrukce staveb a všechny její prvky stále mohutně, stále více se utěšňují kvůli únikům tepla a pronikající radon má stále lepší podmínky k dlouhodobému hromadění, k stále vyšším koncentracím uvnitř staveb.

3.2 LEGISLATIVNÍ POŽADAVKY

Prvním legislativním podkladem, který formuloval požadavky a kritéria k omezování vlivu a průniku radonu do vnitřních prostorů staveb, byla Vyhláška ministerstva zdravotnictví ČR č. 76/1991 Sbírky zákonů. Od 1. ledna 1996 je platná v ČR zcela nová metodika navrhování či posuzování protiradonové ochrany staveb. Je formulována v české normě ČSN 73 0601 „Ochrana staveb proti radonu z podloží“. Kromě jednoznačných ustanovení, která vysvětluje a kategorizují velikost a charakter radonového indexu ve vztahu na vlastnosti základových zemin i stavěb, zavádí norma nové výpočtové postupypro navrhování či posuzování různých způsobů protiradonové ochrany staveb. V revidované normě z října 2000 je navíc obsažen informativní přehled izolačních materiálů se součinitelem difúze radonu D.

V průběhu 1. poloviny roku 1996 byl pro tuto problematiku vyvinut a následně zdokonalen speciální software, s jehož pomocí je možno provést návrh či posudek potřebné minimální tloušťky zvoleného fóliového materiálu velmi rychle na osobním počítači. Nutnou podmínkou k tomu však je zajištění vstupních hodnot pro vlastní výpočet, mezi které patří:

- koncentrace radonu v podloží \(C_s \) [kBq.m\(^{-3}\)],
- propustnost podloží,
- hodnota součinitele difúze radonu v izolaci \(D \) [m\(^2\).s\(^{-1}\)],
- typ objektu (nový, stávající),
- výměna vzduchu v místnosti \(n \) [l.hod\(^{-1}\)],
- objem hodnocené místnosti \(V_k \) [m\(^3\)],
- vodorovná kontaktní plocha \(A_p \) [m\(^2\)],
- svislá kontaktní plocha \(A_s \) [m\(^2\)].

Dosavadní zkušeností i výsledky zkoušek a měření potvrzují, že jednou z nejúčinnějších protiradonových barier staveb je souvislí, pečlivě a kvalifikovaně provedený izolační povlak z fólií z měkčeného PVC, připadně z polyolefinů. Tyto materiály jsou nám především schopny zajistit jeden z nejdůležitějších požadavků specifikovaných v ČSN 73 0601, kterým je zajištěno takové tažnosti izolace, která je nám schopna pro daný typ založení a dané konstrukční provedení spodní stavby přenést mezní deformace podle ČSN 73 1001.

3.3 NAVRHOVÁNÍ A POSUZOVÁNÍ PROTIRADONOVÝCH IZOLACÍ

Návrh protiradonové izolace vychází z požadavku Vyhlášky Státního úřadu pro jadernou bezpečnost č. 307/2002 Sb. o požadavcích na zajištění radiační ochrany, která předpisuje, že v pobytovéch prostorech domu musí být průměrná roční koncentrace radonu menší než směrná hodnota 200 Bq.m\(^{-3}\) pro nové stavby a 400 Bq.m\(^{-3}\) pro stávající stavby.

3.3 NAVRHOVÁNÍ A POSUZOVÁNÍ PROTIRADONOVÝCH IZOLACÍ

Návrh protiradonové izolace vychází z požadavku Vyhlášky Státního úřadu pro jadernou bezpečnost č. 307/2002 Sb. o požadavcích na zajištění radiační ochrany, která předpisuje, že v pobytovéch prostorech domu musí být průměrná roční koncentrace radonu menší než směrná hodnota 200 Bq.m\(^{-3}\) pro nové stavby a 400 Bq.m\(^{-3}\) pro stávající stavby.
3.3.1 SOUČINITEL DIFÚZE “D” RADONU VE ZVOLENÉ FÓLIÍ

Součinitel difúze radonu v izolaci je materiálová konstanta, vypovídá o ochranných vlastnostech příslušných fólií proti pronikání radonu a je mírou schopnosti materiálu plnit funkci protiradonové bariéry. Materiály jako PVC-P, PVC-U a PE-HD mají obecně velmi nízké propustnosti pro radon a jsou pro něj ve srovnání s konstrukčněmi stavebními materiály prakticky nepropustné. Tato vlastnost je u izolačních fóliových materiálů izolačního systému FATRAFOL-H navíc zabezpečena jejich několikavrstvou strukturou a tím vyloučením jakýchkoliv spojitých defektů procházejících přes celou tloušťku materiálu a to v kterémkoliv jejich místě.

Všechny izolační fólie systému FATRAFOL-H používané pro izolace spodních částí staveb byly hodnoceny na propustnost radonu u akreditované Zkušební laboratoře č. 1048 OL 124 při ČVUT Praha a jejich difúzní vlastnosti zjištěné podle metodiky K124/02/95 jsou doloženy v příslušných zkušebních protokolech - viz Tabulka III.

<table>
<thead>
<tr>
<th>DRUH FÓLIE</th>
<th>SOUČINITEL DIFÚZE „D“ [m².s⁻¹] v ploše</th>
<th>SOUČINITEL DIFÚZE „D“ [m².s⁻¹] ve spoji</th>
<th>Zkušební protokol laboratoře K 124</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRAFOL 803</td>
<td>7,0.10⁻¹²</td>
<td>10.10⁻¹²</td>
<td>č. 124201/95</td>
</tr>
<tr>
<td>EKOPLAST 806</td>
<td>5,2.10⁻¹²</td>
<td>4,2.10⁻¹²</td>
<td>č. 124208/95</td>
</tr>
<tr>
<td>STAFOL 914</td>
<td>7,3.10⁻¹²</td>
<td>5,1.10⁻¹²</td>
<td>č. 12406/99</td>
</tr>
<tr>
<td>EKOTEN 915</td>
<td>3,8.10⁻¹²</td>
<td>2,7.10⁻¹²</td>
<td>č. 124210/95</td>
</tr>
<tr>
<td>FATRAFOL P 793</td>
<td>7,5.10⁻¹¹</td>
<td>6,6.10⁻¹¹</td>
<td>č. 124212/97</td>
</tr>
<tr>
<td>TECHNODREN R</td>
<td>2,8.10⁻¹³</td>
<td>3,1.10⁻¹³</td>
<td>č. 124220/96</td>
</tr>
</tbody>
</table>

Poznámka: Údaje uvedené v tabulce jsou naměřenými hodnotami, výpočtové hodnoty přednastavené ve výpočtových programech se mohou nepatrně lišit (zahrnují chybu měření).

3.3.2 KONCENTRACE RADONU V PODLOŽÍ A STUPEŇ PROPUSTNOSTI ZÁKLADOVÉ ZEMINY PRO PLYNY

Koncentrace radonu v podloží (nebo také jinak objevená aktivita radonu v půdním vzduchu) v kilobeqerlech na m³ (kBq.m⁻³) a stupeň propustnosti základové zeminy (základového podloží) pro plyny určují spolu kategorii radonového indexu (dříve radonového rizika) viz Tabulka IV. Tyto další dvě hodnoty nezbytné pro výpočet určují vždy závazné radonový průzkum staveniště.

<table>
<thead>
<tr>
<th>RADONOVÝ INDEX</th>
<th>KONCENTRACE RADONU V PODLOŽÍ [kBq.m⁻³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vysoký</td>
<td>> 100</td>
</tr>
<tr>
<td>Střední</td>
<td>30 - 100</td>
</tr>
<tr>
<td>Nízký</td>
<td>< 30</td>
</tr>
<tr>
<td>Propustnost podloží</td>
<td>nízká</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RYCHLÝ PRŮZKUM</th>
<th>VÝSOKÝ PRŮZKUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vysoký</td>
<td>> 100</td>
</tr>
<tr>
<td>Střední</td>
<td>30 - 100</td>
</tr>
<tr>
<td>Nízký</td>
<td>< 30</td>
</tr>
<tr>
<td>Propustnost podloží</td>
<td>nízká</td>
</tr>
</tbody>
</table>
3.3.3 VÝBĚR KRITICKÝCH - POSUZOVA-NYCH MÍSTNOSTÍ STAVBY

Výběr místnosti stavby, které se budou posuzovat, musí být výsledkem spolupráce zpracovatele výpočtu s objednatelem. Vybraná místnost (či místnosti) musí být z hlediska výskytu a vlivu radonu svou polohou v objektu a charakterem svého provozu nejnebezpečnější. To znamená co největší kontakt jejich stěn a podlahy se základovým podložím (obvykle suterénní místnost v rohu objektu) a z provozního hlediska místnost tzv. „pobytová“, (to je obytná místnost nebo kuchyň, a dále všeobecně místnost, kde součet doby pobytu všech osob, které se v ní mohou zdržovat, činí ročně více než 1 000 hodin). Konečně posledním důležitým hlediskem pro výběr kritické posuzovanej místnosti je předepsaná (nebo skutečná) intenzita jejího větrání, to znamená nášobek výměny vzduchu místnosti za hodinu.

U takto vybrané „kritické místnosti” se do výpočtu vkládají její geometrické parametry, to je rozsah kontaktu ploch a objem místnosti.

3.3.4 VÝPOČET A ZÁVĚRY

Vlastní výpočet potřebné minimální tloušťky zvoleného fóliového materiálu pak probíhá s pomocí počítače a příslušného softwaru rychle a bez dalších problémů. Požadavky normy na provedení fóliové protiradonové bariéry jsou v podstatě shodné s požadavky na tento izolační povlak z hlediska jeho hydroizolační funkce (protože u fólií se jedná zároveň o vynikající materiál hydroizolační). Dosavadní praxe potvrzuje, že v případě až do středního radonového indexu včetně je fóliový hydroizolační povlak, má-li plnit zároveň i funkci protiradonové bariéry, na danou radonovou zátěž staveniště a stavby několikanásobně předimenzován.

4. MATERIÁLY

Používání fólií z polyvinylchloridu a polyolefinů na povlakové izolace chránící stavební objekty před vodou nebo před pronikáním radonu z podloží a naopak, chránící vnější prostředí před pronikáním škodlivých látek, patří dnes už k tradičním řešením. Velkou výhodou je, že by byl v průběhu let vyvinut, dopracován a ověřen celý izolační systém od ochrany vlastní fólie přes různé druhy spojování až k doplňkovým výrobkům jako jsou např. tvarovky na dotěsnění prostorevných detailů. Problémem není ani vytvoření dostatečně těsného prostupu izolací a opracování dalších detailů.

Materiály, z nichž jsou izolace systému FATRAFOL-H vytvářeny, se dělí na:

- IZOLAČNÍ FÓLIE (s dominantní těsnící funkcí v ploše izolačních povlaků),
- DOPLŇKOVÉ IZOLAČNÍ MATERIÁLY (pro dotěsňování některých detailů izolačních povlaků),
- POMOCNÉ MATERIÁLY (kotvící a ochranné prvky, drenážní a odvětrávací vrstvy).

Konkrétní materiály uvedené v dalším textu jsou pro dané účely buď speciálně vyvinuté a vyváženě, nebo pečlivě vybrány ze stávajících výrobků s původně jiným posláním. Při aplikaci systému FATRAFOL-H je třeba považovat izolační materiály za nezaměnitelné, zatímco u ostatních materiálů se připouští případné záměna obdobnými výrobky srovnatelných vlastností.

4.1 IZOLAČNÍ FÓLIE

4.1.1 IZOLAČNÍ FÓLIE Z PVC-P

Všechny uvedené typy fólií jsou vyráběny technologií válcování, laminací a řezání na povlaky vhodné pro izolací spodních částí staveb.

Materiály, z nichž jsou izolace systému FATRAFOL-H vytvářeny, se dělí na:

- IZOLAČNÍ FÓLIE, které se využívají pro izolaci spodních částí staveb.
- DOPLŇKOVÉ IZOLAČNÍ MATERIÁLY, které se využívají pro dotěsňování některých detailů izolačních povlaků.
- POMOCNÉ MATERIÁLY, které se využívají pro kotvení a ochranu povlaků.

Konečně posledním důležitým hlediskem pro výběr kritické posuzovanej místnosti je předepsaná (nebo skutečná) intenzita jejího větrání, to znamená nášobek výměny vzduchu místnosti za hodinu. U takto vybrané „kritické místnosti” se do výpočtu vkládají její geometrické parametry, to je rozsah kontaktu ploch a objem místnosti.
4.1.1.1 Hydroizolační fólie z PVC-P FATRAFOL 803 - Válcovaná a laminovaná homogenní fólie.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výr. rozměry 1)</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>● Podniková norma PND 5-269-97</td>
<td>- hnědá (standardní varianta)</td>
<td>1)</td>
<td>Vzhledem k výborné chemické odolnosti vůči převážné většině anorganických kyselin, zásad a jejich solí je určena především k izolacím pozemních a podzemních částí staveb proti agresivní tlakové a prosakující vodě a dále jako izolační vrstva izolačních systémů proti pronikání kapalin a výluh do spodních vod. S ohledem na velmi nízkou propustnost fólie pro radon a možnost zhotovení dokonale plynotěsných spojů vytváří fólie zároveň protiradonovou bariéru. Používá se dále k izolacím tunelů, zemních nádrží, jímek, zemědělských staveb, vodních staveb a úložišť průmyslových produktů, jejichž chemické působení odpovídá odolnosti fólie garantované výrobcem.</td>
</tr>
<tr>
<td></td>
<td>● Certifikát vydaný ČSI a. s. Praha, dle NV č. 178/1997 Sb. ve znění pozdějších změn</td>
<td>- žlutočerná (varianta se signální vrstvou)</td>
<td>2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- mléčně průsvitná (níhrada fólie Fatrafol 801)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- modročerná (tunelová fólie) Fatrafol 803/T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balení:</td>
<td>Fólie je navinuta na papírové trubici a opatřena vhodným obalem. Zabalené role jsou uloženy na dřevěných paletách. Palety jsou vratné. Počet roli a množství fólie na paletě viz Tabulka V.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.1.2 Izolační fólie z PVC-P EKOPLAST 806 - Válcovaná a laminovaná homogenní fólie.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výr. rozměry 1)</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>● Certifikát vydaný ČSI a. s. Praha, dle NV č. 178/1997 Sb. ve znění pozdějších změn</td>
<td></td>
<td>2)</td>
<td></td>
</tr>
<tr>
<td>Balení:</td>
<td>Fólie je navinuta na papírové trubici a opatřena vhodným obalem. Zabalené role jsou uloženy na dřevěných paletách. Palety jsou vratné. Počet roli a množství fólie na paletě viz Tabulka VI.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.1.3 Izolační fólie z PVC-P STAFOL 914 - Válcovaná homogenní fólie.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výr. rozměry 1)</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>● Podniková norma PND 5-281-99</td>
<td>- nestandardní černá</td>
<td>1)</td>
<td>Fólie je určena především k izolacím staveb proti zemní vlhkosti. Je vhodná např. k izolacím podlahových ploch průmyslových, obchodních a skladovacích hal. Fólii lze dále použít k izolaci obvodového zdiva proti vzlínající vtlkosti jak u nových objektů, tak při provádění hydroizolací starých objektů, pro izolace v prostředí s vysokou agresivitou (výskyt anorganických kyselin, zásad a jejich solí), jako ochrannou nebo separační vrstvu v konstrukci podlahy, apod. Celoplošný hydroizolační povlak ze vzájemně svařených pásu fólie plní zároveň i funkci účinné protiradonové bariéry.</td>
</tr>
<tr>
<td></td>
<td>● Certifikát vydaný ČSI a. s. Praha, dle NV č. 178/1997 Sb. ve znění pozdějších změn</td>
<td></td>
<td>2)</td>
<td></td>
</tr>
<tr>
<td>Balení:</td>
<td>Fólie je navinuta na papírové trubici a opatřena vhodným obalem. Zabalené role jsou uloženy na dřevěných paletách. Palety jsou vratné. Počet roli a množství fólie na paletě viz Tabulka V.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabulka V: Základní údaje o hydroizolační fólii FATRAFOL 803

<table>
<thead>
<tr>
<th>VLASTNOST</th>
<th>Jednotka</th>
<th>FATRAFOL 803/2T</th>
<th>FATRAFOL 803</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tloušťka</td>
<td>mm</td>
<td>2,0</td>
<td>3,0</td>
</tr>
<tr>
<td>Šířka</td>
<td>mm</td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td>Návin na roli *)</td>
<td>m</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>m²</td>
<td>19,5</td>
<td>13</td>
</tr>
<tr>
<td>Plošná hmotnost</td>
<td>kg.m⁻²</td>
<td>2,66</td>
<td>3,99</td>
</tr>
<tr>
<td>Počet rolí na paletě</td>
<td>ks</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Počet rolí na paletě</td>
<td>ks</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Počet rolí na paletě</td>
<td>ks</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Hmotnost plné palety</td>
<td>kg</td>
<td>cca 1000</td>
<td>cca 950</td>
</tr>
<tr>
<td>Barva</td>
<td></td>
<td>světle modrá</td>
<td>hnedá</td>
</tr>
</tbody>
</table>

*) V závorkách je uvedeno množství fólie na rolích u velkonábalů. U fólie FATRAFOL 803/2T se délka návinů řídí požadavkem zákazníka dle skutečné délky obvodu izolované sekce raženého tunnelu.

Tabulka VI: Základní údaje o izolačních fóliích EKOPLAST 806 a STAFOL 914

<table>
<thead>
<tr>
<th>VLASTNOST</th>
<th>Jednotka</th>
<th>EKOPLAST 806</th>
<th>STAFOL 914</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tloušťka</td>
<td>mm</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Šířka</td>
<td>mm</td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td>Návin na roli</td>
<td>m</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>m²</td>
<td>65</td>
<td>39</td>
</tr>
<tr>
<td>Plošná hmotnost</td>
<td>kg.m⁻²</td>
<td>0,77</td>
<td>1,29</td>
</tr>
<tr>
<td>Počet rolí na paletě</td>
<td>ks</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Počet rolí na paletě</td>
<td>ks</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Hmotnost plné palety</td>
<td>kg</td>
<td>cca 980</td>
<td>980 (900)</td>
</tr>
<tr>
<td>Barva</td>
<td></td>
<td>tmavě šedá</td>
<td>nestandardní černá</td>
</tr>
</tbody>
</table>

Tabulka VII: Vlastnosti fólií FATRAFOL 803, EKOPLAST 806 a STAFOL 914

<table>
<thead>
<tr>
<th>VLASTNOST</th>
<th>Jednotka</th>
<th>Hodnoty naměřené státní zkušebnou</th>
<th>NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mez pevnosti v tahu při přetržení</td>
<td>MPa</td>
<td>P 19,1 N 17,3</td>
<td>ČSN EN ISO 527-1</td>
</tr>
<tr>
<td>Poměrné prodloužení při přetržení</td>
<td>%</td>
<td>P 386 N 369</td>
<td>ČSN EN ISO 527-1</td>
</tr>
<tr>
<td>Rozměrová stálost (80 °C, 6 hodin)</td>
<td>%</td>
<td>P -0,62 N +0,64</td>
<td>ČSN 64 0610</td>
</tr>
<tr>
<td>Tvrdość při 23 °C, 3 s</td>
<td>Sh A</td>
<td>85 ± 3</td>
<td>ČSN EN ISO 868</td>
</tr>
<tr>
<td>Nasákovost ve vodě (7 dni - 23 °C)</td>
<td>%</td>
<td>0,21</td>
<td>ČSN EN ISO 62</td>
</tr>
<tr>
<td>Měrné teplo</td>
<td>J.kg⁻¹.K⁻¹</td>
<td>1,460</td>
<td></td>
</tr>
<tr>
<td>Součinitel tepelné vodivosti λ</td>
<td>W.m⁻¹.K⁻¹</td>
<td>0,145</td>
<td></td>
</tr>
<tr>
<td>Pevnost v průtlaiku</td>
<td></td>
<td>vyhovuje</td>
<td>ČSN 64 6223 čl. 18</td>
</tr>
<tr>
<td>Ohyb za chladu (-20 °C)</td>
<td></td>
<td>žádné trhliny</td>
<td>ČSN 64 6223 čl. 20</td>
</tr>
<tr>
<td>Odolnost proti prorůstání kořenů</td>
<td></td>
<td>neprorůstají</td>
<td>ČSN 64 6223 čl. 21</td>
</tr>
<tr>
<td>Odolnost proti perforaci</td>
<td></td>
<td>vyhovuje</td>
<td>ČSN 64 6223 čl. 26</td>
</tr>
<tr>
<td>Stupeň hořlavosti</td>
<td></td>
<td>C2</td>
<td>ČSN 73 0823</td>
</tr>
<tr>
<td>Číslo odporu difúze vodní páry μ</td>
<td></td>
<td>1</td>
<td>ČSN 64 6223</td>
</tr>
<tr>
<td>Součinitel difúze radonu D m².s⁻¹</td>
<td></td>
<td>7.0.10⁻¹²</td>
<td>Metodika K124/02/95</td>
</tr>
<tr>
<td>Rozmezí teploty pro kladení °C</td>
<td></td>
<td>-5 až +40</td>
<td></td>
</tr>
<tr>
<td>Rozmezí teploty pro funkci °C</td>
<td></td>
<td>-20 až +40</td>
<td></td>
</tr>
</tbody>
</table>

P - podélný směr výroby fólie N - kolmo na směr výroby fólie
4.1.2 IZOLAČNÍ FÓLIE Z POLYOLEFINŮ

4.1.2.1 Izolační fólie z PE-HD

Fólie z PE-HD jsou vyráběny technologií vytlačování s následnou kalibrací rozměrů a úpravou povrchu na žehlicím tříválci. Materiál vhodný pro izolace spodních částí staveb z produkce Fatry je vyráběn pod obchodním označením EKOTEN.

Z užitných vlastností fólií z PE-HD uplatňujících se u izolací spodních částí staveb lze jmenovat následující:
- výborná chemická odolnost proti anorganickým i organickým látkám včetně ropných látek;
- odolnost proti působení agresivních podzemních vod;
- extrémní odolnost proti půdním mikroorganismům;
- pružnost a ohebnost za chladu;
- odolnost proti prorůstání kořenů rostlin;
- účinná protiradonová bariéra;
- zdravotní a ekologická nezávadnost;
- funkční spolehlivost a dlouhodobá životnost.

4.1.2.2 Izolační fólie z modifikovaných polyolefinů

Fólie z modifikovaných typů polyolefinů jsou vyráběny obdobnou technologií jako fólie z PVC-P, to je laminací tenkých válcovaných fólií. Speciální materiálová báze umožňuje jednoduchý způsob aplikace známými postupy používanými pro fólie z PVC-P. Materiál z produkce Fatry je dodáván pod obchodním označením FATRAFOL P.

Fólie FATRAFOL P nelze stejně jako ostatní fólie systému FATRAFOL-H použít pro aplikace, kde bude fólie vystavena expozici UV zářením.

Mezi základní přednosti materiálu patří:
- výborná chemická odolnost proti anorganickým i organickým látkám včetně ropných látek;
- výborná zpracovatelnost a ohebnost i při nízkých teplotách;
- snadná svlačitelnost horkým vzduchem, jednoduché opravování detailů;
- trvalá pružnost a ohebnost po celou dobu životnosti;
- vysoká mrazuvzdornost a odolnost při ohybu za chladu;
- výborná rozměrová stabilita;
- dobrá chemická odolnost anorganickým kyselinám, zásadám a jejich solím;
- snášenlivost s lehčeným polystyrenem;
- zdravotní a ekologická nezávadnost;
- funkční spolehlivost a vysoká životnost.

Fólie je určena pro:
- těsnění skládek odpadů a jímek na agresivní kapaliny
- izolace manipulačních ploch, záchytných a havarijních jímek proti úniku ropných látek včetně benzínu
- těsnění spodních částí staveb proti vlhkosti, vodě včetně vody tlakové a radonu

Aplikovaná fólie plní vedle izolační funkce proti kapalinám i funkci protiradonové bariéry.

4.1.2.3 Izolační fólie z PE-HD EKOTEN 915 - Vytlačovaná homogenní fólie.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Výr. rozměry 1)</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>černá</td>
<td>Fólie je určena pro: těsnění skládek odpadů a jímek na agresivní kapaliny izolace manipulačních ploch, záchytných a havarijních jímek proti úniku ropných látek včetně benzínu těsnění spodních částí staveb proti vlhkosti, vodě včetně vody tlakové a radonu</td>
</tr>
</tbody>
</table>

Balení: Fólie je navinuta do rolí, které jsou opatřeny vhodným obalem. Zabalené role jsou uloženy na dřevěných paletách. Palety jsou vratné. Počet rolí a množství fólie na paletě viz Tabulka VIII.

4.1.2.4 Izolační fólie z modifikovaných polyolefinů

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výr. rozměry 1)</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>● Podniková norma PND 5-311-96 ● Certifikát vydaný ČSL a. s. Praha, dle NV č. 178/1997 Sb. ve znění pozdějších změn</td>
<td>černá</td>
<td>1) viz Tabulka VIII 2) viz Tabulka IX</td>
<td>Fólie je určena pro: těsnění skládek odpadů a jímek na agresivní kapaliny izolace manipulačních ploch, záchytných a havarijních jímek proti úniku ropných látek včetně benzínu těsnění spodních částí staveb proti vlhkosti, vodě včetně vody tlakové a radonu</td>
</tr>
</tbody>
</table>

Aplikovaná fólie plní vedle izolační funkce proti kapalinám i funkci protiradonové bariéry.

Balení: Fólie je navinuta do rolí, které jsou opatřeny vhodným obalem. Zabalené role jsou uloženy na dřevěných paletách. Palety jsou vratné. Počet rolí a množství fólie na paletě viz Tabulka VIII.
4.1.2.2.1 Hydroizolační fólie FATRAFOL P 793 - Válcovaná a laminovaná fólie.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Viz Tabulka VIII</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Viz Tabulka X</td>
</tr>
</tbody>
</table>

Balení: Fólie je navinuta na roli, které jsou opatřeny vhodným obalem. Zabalené role jsou uloženy na dřevěných paletách. Palety jsou vrátné. Počet roli a množství fólie na paletě viz Tabulka VIII.

4.1.2.2.2 Hydroizolační fólie FATRAFOL P 91 - Válcovaná a laminovaná fólie.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Balení: Fólie je navinuta na roli, které jsou opatřeny vhodným obalem. Zabalené role jsou uloženy na dřevěných paletách. Palety jsou vrátné. Počet roli a množství fólie na paletě viz Tabulka VIII.

Tabulka VIII: Základní údaje o izolačních fóliích EKOTEN 915, FATRAFOL P 793 a FATRAFOL P 917

<table>
<thead>
<tr>
<th>VLASTNOST</th>
<th>Jednotka</th>
<th>EKOTEN 915</th>
<th>EKOTEN 915/S**</th>
<th>FATRAFOL 915 P 793</th>
<th>FATRAFOL 915 P 917</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tloušťka</td>
<td>mm</td>
<td>1,0</td>
<td>1,5</td>
<td>2,0</td>
<td>2,0</td>
</tr>
<tr>
<td>Šířka</td>
<td>mm</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
<td>1300</td>
</tr>
<tr>
<td>Návin na roli *)</td>
<td>m</td>
<td>50</td>
<td>50 (130)</td>
<td>50 (100)</td>
<td>50</td>
</tr>
<tr>
<td>Plošná hmotnost</td>
<td>kg.m²</td>
<td>65</td>
<td>60 (169)</td>
<td>65 (130)</td>
<td>65</td>
</tr>
<tr>
<td>Počet roli na paletě</td>
<td>malonábal</td>
<td>1,05</td>
<td>1,57</td>
<td>2,10</td>
<td>2,14</td>
</tr>
<tr>
<td>Počet roli na paletě</td>
<td>velkonábal</td>
<td>19 blok; 15 pyramida</td>
<td>19 blok; 15 pyramida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hmotnost plně palety</td>
<td>malonábal</td>
<td>cca 700</td>
<td>cca 630</td>
<td>cca 830</td>
<td>cca 920 blok; 720 pyramida;</td>
</tr>
<tr>
<td>Hmotnost plně palety</td>
<td>velkonábal</td>
<td>cca 810</td>
<td>cca 830</td>
<td>cca 430</td>
<td>cca 430</td>
</tr>
</tbody>
</table>

*) V závorce je uvedena délka návinů pro velkonábal.
**) Oboustranně dezénovaná fólie určená především pro izolace svahů skladek odpadů.
4.1.3 OCHRANNÉ DRENÁŽNÍ FÓLIE

4.1.3.1 Profilované fólie Technodren 0815 Z1 a 2015 Z2 - jsou speciální profilované fólie z neměkčeného polyvinylchloridu. Systém kombinuje výhody vodotěsnosti, plynotěsnosti a příznivý účinek působení vzduchové mezery v labyrintu opěrných výstupků - nopků.

<table>
<thead>
<tr>
<th>VLASTNOST</th>
<th>Jednotka</th>
<th>Hodnota</th>
<th>NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mez pevnosti v tahu při přetržení</td>
<td>MPa</td>
<td>24</td>
<td>ČSN EN ISO 527-1</td>
</tr>
<tr>
<td>Poměrné prodloužení při přetržení, nejméně</td>
<td>%</td>
<td>650</td>
<td>ČSN EN ISO 527-1</td>
</tr>
<tr>
<td>Mez kluzu v tahu, nejméně</td>
<td>MPa</td>
<td>15</td>
<td>ČSN EN ISO 527-1</td>
</tr>
<tr>
<td>Poměrné prodloužení na mezi kluzu, nejméně</td>
<td>%</td>
<td>8</td>
<td>ČSN EN ISO 527-1</td>
</tr>
<tr>
<td>Rozměrová stálost (80 °C, 6 hodin)</td>
<td>%</td>
<td>±1,0</td>
<td>ČSN 64 0610</td>
</tr>
<tr>
<td>Nasákovost ve vodě (7 dni - 23 °C)</td>
<td>%</td>
<td>0,09</td>
<td>ČSN EN ISO 62</td>
</tr>
<tr>
<td>Měrné teplo</td>
<td>J.kg⁻¹.K⁻¹</td>
<td>1550</td>
<td></td>
</tr>
<tr>
<td>Součinitel tepelné vodivosti</td>
<td>W.m⁻¹.K⁻¹</td>
<td>0,74</td>
<td></td>
</tr>
<tr>
<td>Pevnost v průtlaku</td>
<td>-</td>
<td>vyhovuje</td>
<td>ČSN 64 6223 čl. 18</td>
</tr>
<tr>
<td>Součinitel difúze radonu</td>
<td>m².s⁻¹</td>
<td>3,8. 10⁻¹²</td>
<td>Metodika K124/02/95</td>
</tr>
<tr>
<td>Maximální dovolené zatížení v tlaku</td>
<td>MPa</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Rozmezí teplot pro funkci</td>
<td>°C</td>
<td>-40 až +70</td>
<td></td>
</tr>
</tbody>
</table>

Tabulka IX: Vlastnosti fólie EKOTEN 915

Tabulka X: Vlastnosti fólie FATRAFOL P 793 a FATRAFOL P 917

<table>
<thead>
<tr>
<th>VLASTNOST</th>
<th>Jednotka</th>
<th>FATRAFOL P 793</th>
<th>FATRAFOL P 917</th>
<th>NORMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mez pevnosti v tahu při přetržení</td>
<td>MPa</td>
<td>P 22,9 N 18,5</td>
<td>P 13,5 N 13,8</td>
<td>ČSN EN ISO 527-1</td>
</tr>
<tr>
<td>Poměrné prodloužení při přetržení</td>
<td>%</td>
<td>P 753 N 703</td>
<td>P 655 N 682</td>
<td>ČSN EN ISO 527-1</td>
</tr>
<tr>
<td>Rozměrová stálost (80 °C, 6 hodin)</td>
<td>%</td>
<td>P -0,44 N +0,01</td>
<td>P -0,82 N -0,9</td>
<td>ČSN 64 0610</td>
</tr>
<tr>
<td>Nasákovost ve vodě (7 dni - 23 °C)</td>
<td>%</td>
<td>0,22</td>
<td>0,06</td>
<td>ČSN EN ISO 62</td>
</tr>
<tr>
<td>Součinitel tepelné vodivosti λ</td>
<td>W.m⁻¹.K⁻¹</td>
<td>0,357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohyb za chladu (-40 °C)</td>
<td>-</td>
<td>vyhovuje</td>
<td>ČSN 64 6223 čl. 18</td>
<td></td>
</tr>
<tr>
<td>Odolnost proti prorůstání kořenů</td>
<td>-</td>
<td>žádné trhliny</td>
<td>ČSN 64 6223 čl. 20</td>
<td></td>
</tr>
<tr>
<td>Odolnost proti perforaci</td>
<td>-</td>
<td>neprorůstají</td>
<td>ČSN 64 6223 čl. 21</td>
<td></td>
</tr>
<tr>
<td>Součinitel difúze radonu D</td>
<td>m².s⁻¹</td>
<td>7,5.10⁻¹¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rozmezí teplot pro kladení</td>
<td>°C</td>
<td>-5 až +40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rozmezí teplot pro funkci</td>
<td>°C</td>
<td>-40 až +40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxim. dovolené zatížení v tlaku</td>
<td>MPa</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.3.2 UPLATNĚNÍ - fólie jsou určeny především jako:
- odvětrávací vrstva k odvádění vlhkosti z vnějších ploch suterenního zdiva budov,
- oddělovací fólie pro sanaci velmi vlhkých podlah a stěn,
- ochranná odvětrávací a drenážní vrstva povlakové hydroizolace.

Balení: Fólie je navinutá do roli, které jsou kryty PE fólií.
4.1.3.2 Profilovaná fólie TECHNODREN 0815 R1 - je speciální profilovaná fólie z neměkčeného polyvinylchloridu opatřená izobutylkaučukovým tmelem pro zabránění propustnosti spojů na radon.

Systém kombinuje výhody vodotěsnosti, plynotěsnosti a příznivý účinek působení vzduchové mezery v labyrintu opěrných výstupků - nopků.

4.2 DOPLŇKOVÉ IZOLAČNÍ MATERIÁLY

Jedná se o doplňkové prvky izolačního systému, jejichž užití napomáhá vytvoření dokonalé těsnosti izolačního pláště i v jednotlivých detailech. Zahrnují lisované tvarovky z fólie pro opracování prostorových detailů (Kužel, Vlnovec, Kout), plošné výskyky z fólie (Záplata, Límek) a tekuté těsnící hmoty s vysokou přilnavostí k fólii. Základní doplňkové materiály vycházejí přitom z jednotlivých typů izolačních fólií z výroby FATRA, a. s. Napajedla. Tím je zaručena jejich vzájemná sluchitelnost a materiálová jednotnost systému.
4.2.1 KUŽEL DRUH 10

- Vakuově tvarovaný dílec z hydroizolačních fólií FATRAFOL 803, EKOPLAST 806, FATRAFOL P 793 a FATRAFOL P 917.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>KUŽEL DRUH 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>● Podniková norma PND 5-101-97, ML č. 1/1997</td>
<td>- dle použité hydroizolační fólie</td>
<td>výška: 50 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>průměr: 120 mm</td>
<td></td>
</tr>
</tbody>
</table>

Uplatnění: Pro opravování a utěsnění koutů a rohů při provádění izolaci fóliemi z PVC-P a modifikovaných PO.

Balení: V lepenkové bedně po 360 kusech.

4.2.2 VLNOVEC DRUH 11

- Vakuově tvarovaný dílec z hydroizolačních fólií FATRAFOL 803, EKOPLAST 806, FATRAFOL P 793 a FATRAFOL P 917.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>VLNOVEC DRUH 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>● Podniková norma PND 5-101-97, ML č. 2/1997</td>
<td>- dle použité hydroizolační fólie</td>
<td>výška: 25 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>průměr: 160 mm</td>
<td></td>
</tr>
</tbody>
</table>

Uplatnění: Pro opravování a utěsnění nároží při provádění izolaci fóliemi z PVC-P a modifikovaných PO.

Balení: V lepenkové bedně po 240 kusech.

4.2.3 ZÁPLATA DRUH 12

- Kruhový výsek z izolačních fólií FATRAFOL 803, EKOPLAST 806, FATRAFOL P 793 a FATRAFOL P 917.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>ZÁPLATA DRUH 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>● Podniková norma PND 5-101-97, ML č. 3/1997</td>
<td>- dle použité fólie</td>
<td>průměr: 160 mm</td>
<td></td>
</tr>
</tbody>
</table>

Uplatnění: Po překrytí poškozených míst izolačního pláště nebo kolivcích prvků, které procházejí izolací mimo překrytí přesahy fólií.

Balení: V lepenkové bedně po 300 kusech.

4.2.4 LÍMEC DRUH 13

- Výsek tvaru meziokruží z izolačních fólií FATRAFOL 803, EKOPLAST 806, FATRAFOL P 793 a FATRAFOL P 917.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>LÍMEC DRUH 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>● Podniková norma PND 5-101-97, ML číslo 4/1997</td>
<td>- dle použité fólie</td>
<td>vnější průměr: 400 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vnitřní průměr: 20 mm</td>
<td></td>
</tr>
</tbody>
</table>

Uplatnění: Ke zhotovení tvarovek pro kruhové prostupy izolačním povlakem z PVC-P a modifikovaných polylefinů.

Balení: V PE sáčcích po 10 kusech a v množství 140 ks v lepenkové krabici.
4.2.5 POLYURETANOVÝ TMEL
Disperze anorganických pigmentů a plnidel v nízkoviskového polyolu.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMFI Francie aj.</td>
<td>-</td>
<td>- různá</td>
<td>kartuše 310 ml „salám“ 600 ml</td>
<td>Pro trvale elastické utěsňování styků izolační fólie s kovy, plasty a stavebními hmotami. Tmelené plochy musí být suché a čisté. Neufíde se. Nanáší se přímo z aplikátoru případně stěrkou.</td>
</tr>
</tbody>
</table>

Upozornění: Většina tmelů jsou hořlaviny III. třídy!

4.2.6 KOUT Z PE-HD druh 17
Vakuově tvarovaný dílec z izolační fólie EKOTEN 915.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>KOUT z PE-HD druh 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>• Podniková norma PND 5-101-97 ML č. 6/1997</td>
<td>- černá</td>
<td>délka základny hranolu: 280 mm</td>
<td></td>
</tr>
</tbody>
</table>

Upozornění: Pro opracování koutů při provádění izolací fóliemi z PE-HD. Bašte: V PE sáčcích po 10 kusech a v množství 60 ks v lepenkové bedně.

4.2.7 SVAŘOVACÍ DRÁT z PE-HD druh 1050
Vytlačovaný drát z PE-HD vysokohustotního polyethylenu.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>• Podniková norma PND 5-082-96</td>
<td>- černá</td>
<td>průměr drátu: 3 mm, 4 mm a 5 mm</td>
<td>Pomocný materiál pro extruzivní svařování při provádění izolací fóliemi z PE-HD.</td>
</tr>
</tbody>
</table>

Balení: V cívkách po 5 až 10 kg uložených po 2 ks do lepenkových krabic.
4.2.8 **ZÁLIVKOVÁ HMOTA Z-01**
Roztok PVC a přísad v organických rozpouštědlech.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Balení</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFIX production, s. r. o., Kojetín</td>
<td>-</td>
<td>- tmavě šedá</td>
<td>plechovky o obsahu 2 l a 10 l</td>
<td>Pro pojišťování těsností průběžných spojů a T - spojů izolačních fólií z PVC-P. Nanáší se pomocí PE lahvíčky s výtokovou trubíčkou ve víku. Po nanesení zasychá během 2 hodin. K případnému ředění zálivkové hmoty dodává výrobce ředidlo pod obchodním označením L-494 v plechovkách po 2 l.</td>
</tr>
</tbody>
</table>

Upozornění: Obsahuje tetrahydrofuran (viz dále ředidlo L-494). Výpary škodí zdraví! Hořlavina I. třídy!

4.2.9 **ŘEDIDLO L-494**
Bezbarva kapalina.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Balení</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFIX production, s. r. o., Kojetín</td>
<td>-</td>
<td>- čírá</td>
<td>-</td>
<td>K ředění zálivkových hmot určených pro pojišťování spojů izolačních fólií z PVC-P FATRAFOL, EKOPLAST a STAFOL. Dále jej lze použít ke studenému spojování izolačních fólií z PVC-P za teploty okolo nad +15 °C. Může se používat pouze tam, kde je zajištěna dostatečná cirkulace a výměna vzduchu. Konečná pevnost spoje je dosažena po 24 hodinách.</td>
</tr>
</tbody>
</table>

Upozornění: Ředidlo L-494 obsahuje tetrahydrofuran (THF), což je prachavá, lehce vznětlivá, jedovatá bezbarvá kapalina. Výpary škodí zdraví! Hořlavina I. třídy!

4.2.10 **PROFIL NOVOPLAST druh 1863 - č.h. 1557**
Těsnící profilovaný pás s dilatační smyčkou vyrobený vytlačováním směsí z PVC-P.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s., Napajedla</td>
<td>● Podniková norma PND 5-100-95</td>
<td>- žlutobílá</td>
<td>tloušťka: 3 mm šířka: 192 mm ploš. hmotnost: 2,40 kg.m²</td>
<td>K dotěsnění dilatačních spár vodotěsných betonových stavebních konstrukcí izolovaných fólií FATRAFOL 803 (viz příloha - obrázek 13d).</td>
</tr>
</tbody>
</table>

Balení: V kotoučích po 15 běžných metrech.
4.3 POMOCNÉ MATERIÁLY

Tyto prvky představují soubor materiálů sloužících především k zajištění styku izolačního pláště s ostatními konstrukčními prvky staveb. Zahrnují především kotvící a úchytné prvky a dále separační a ochranné materiály. Mezi tyto materiály patří rovněž profilované fólie používané jako ochranné, separační a drenážní nebo odvětrávací vrstvy k odvádění vlhkosti nebo radonu.

Vzhledem k materiálové rozmanitosti těchto prvků není řada z nich ze výroby FATRA Napajedla. Uvedené výrobky byly pro daný účel odzkoušeny a ověřeny. Při zachování shodných vlastností jsou však rovnocenně zaměnitelné výrobky jiných výrobců. Výběr konkrétních výrobků u některých z nich však po-važujeme za doporučený.

V případě nutnosti užít při řešení konkrétní aplikace jiný zde neuvedený materiál, doporučujeme konzultaci jeho vhodnosti s doporučenými prodejními, poradenskými a servisními organizacemi.

4.3.1 OCHRANNÉ TEXTILIE

Netkané textilie ze syntetických vláken.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Dodávané typy</th>
<th>Výrobní rozměry</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETEX a. s. Moravský Krumlov,</td>
<td>-</td>
<td>dle plošné hmotnosti: 300 g.m⁻² až 1 500 g.m⁻²</td>
<td>tloušťka: dle typu 3 mm až 7 mm šířka: 2000 mm délka v roli: různá (uvedená na štítku)</td>
<td>Pro vytváření podkladních a krycích ochranných a separačních vrstev hydroizolačních povlaků.</td>
</tr>
<tr>
<td>JUTA a. s. Dvůr Králové,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITOP a. s. Mimoň aj.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Balení: Textilie jsou navinuty v rolích, role se dodávají většinou nebalené, volně ložené.

4.3.2 PROFILY NOVODUR druh 1214

Profily ze směsi houževnatého PVC a příslušné vyrobené technologií vytlačování.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Dokumentace</th>
<th>Barva</th>
<th>VÝROBNÍ ROZMĚRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>● Podniková norma PND 5-261-96</td>
<td></td>
<td>tloušťka stěny: 2,0 mm (pásek též 3,5 mm), délka přířezů: maximálně 2 500 mm, další rozměry: dle tabulky;</td>
</tr>
</tbody>
</table>

Balení: Profily v délích do 2 000 mm v dřevěných bednách, v délích nad 2000 mm ve vlnité lepence a hadici z PE.
4.3.3 KOMPLETAČNÍ PRVKY PRO FÓLIE TECHNODREN

4.3.3.1 PRŮCHODKA Ø 150

Tvarovka z PVC-U

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>UPLATNĚNÍ</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>PRŮCHODKA Ø 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>K napojení fólie Technodren na stavební průchodky nebo přímo na produktovody inženýrských sítí o průměru 150 mm, kolmo procházející izolací.</td>
<td>- šedá</td>
<td>rozměr formátu: 400 x 400 mm kužel: Ø vrchní 32,5 mm Ø spodní 150 mm</td>
<td></td>
</tr>
</tbody>
</table>

Balení: V lepenkových bednách po 100 ks.

4.3.3.2 PRŮCHODKA Ø 200

Tvarovka z PVC-U

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>UPLATNĚNÍ</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>PRŮCHODKA Ø 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s. Napajedla</td>
<td>K napojení fólie Technodren na stavební průchodky nebo přímo na produktovody inženýrských sítí o průměru 150 až 200 mm, kolmo procházející izolací.</td>
<td>- šedá</td>
<td>rozměr formátu: 400 x 400 mm kužel: Ø vrchní 80 mm Ø spodní 200 mm</td>
<td></td>
</tr>
</tbody>
</table>

Balení: V lepenkových bednách po 100 ks.
4.3.3.3 KOUTOVÁ TVAROVKA
Tvarovka z PVC-U.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>UPLATNĚNÍ</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>KOUTOVÁ TVAROVKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATRA, a. s.</td>
<td>K napojení a zesílení izolace fólií Technodren v koutech</td>
<td>šedá</td>
<td>rozměr v mm: 100x100x100</td>
<td></td>
</tr>
<tr>
<td>Napajedla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Balení: V lepenkových bednách po 100 ks.

4.3.3.4 ODVĚTRÁVACÍ LIŠTA
Profil ze směsi PVC a přísad vyrobeny technologií vytlačování.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>UPLATNĚNÍ</th>
<th>Barva</th>
<th>Výrobní rozměry</th>
<th>ODVĚTRÁVACÍ LIŠTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLYPROFIL</td>
<td>Ukončení hydroizolace u svislých konstrukcí nad terénem</td>
<td>bílá</td>
<td>délka 2 m, výška 89 mm</td>
<td></td>
</tr>
<tr>
<td>s. r. o.,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kroměříž</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Balení: V pytli po 25 ks.

4.3.4 ÚCHYTNÉ PRVKY Z POPLASTOVANÉHO PLECHU
Ploché přířezy nebo tvarované profily z Viplanylu 60 (pozinkovaný plech s jednostranným nánosem plastu) nebo speciálního plechu povrstveného fólií FATRAFOL P 917 (pro fólie z TPO).

VÝROBCE: různí
DOPORUČENÉ TVARY: dle obrázku

<table>
<thead>
<tr>
<th>Typ</th>
<th>Tvar a doporučené rozměry v mm</th>
<th>NÁZEV</th>
<th>Rozvinutá šířka [mm]</th>
<th>UPLATNĚNÍ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>pásek</td>
<td>50 mm</td>
<td>• etapová ukončení</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• liniové kotvení u prostupů a při změně sklonu</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>vnitřní koutová lišta rovnořamenná</td>
<td>100 mm</td>
<td>• obvodové kotvení v koutech podkladu</td>
</tr>
</tbody>
</table>

UPLATNĚNÍ: Pro obvodové nebo mezilehlé uchycení izolačního povlaku z fólií z TPO a PVC-P k podkladu. Upevnění úchytých prvků z poplastovaného plechu se provádí pomocí kotvících prvků. Nános PVC-P (TPO) je svařitelný s izolačními fóliemi z PVC-P (TPO) horkým vzduchem i pomocí THF (THF pouze pro PVC-P).
4.3.5. KOTVÍCÍ PRVKY

4.3.5.1 ROZPĚRNÝ NÝT
- Hliníkový zatlučák nebo šroubovací rozpěrný nýt (hmoždinka) se širokou hlavou a s ocelovým rozpěrným trnem.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Výrobní rozměry</th>
<th>UPLATNĚNÍ</th>
<th>ROZPĚRNÝ NÝT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Různí</td>
<td>Ø nýtů: 6 mm délka dříku: 30 mm až 60 mm</td>
<td>Pro kotvení izolační fólie (v kombinaci s roznášecí podložkou) a účinky bez nekrycích plechových prvků k nosnému podkladu z nelehčeného betonu případně zdiva z plného kádrového cihel.</td>
<td></td>
</tr>
</tbody>
</table>

4.3.5.2 NÝT TRUBKOVÝ
- Zatlučák hmoždinka s pevnou taliřovou hlavou a s rozpěrným trnem z oceli s antikorozní povrchovou úpravou.

<table>
<thead>
<tr>
<th>VÝROBCE</th>
<th>Výrobní rozměry</th>
<th>UPLATNĚNÍ</th>
<th>NÝT TRUBKOVÝ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Různí</td>
<td>Ø nýtů: 8 mm délka dříku: 60 mm až 300 mm</td>
<td>Pro bodové kotvení fólie a tepelné izolační desek k podkladu z nelehčeného betonu</td>
<td></td>
</tr>
</tbody>
</table>

4.3.6 ROZNÁŠECÍ PODLOŽKY
- Výlisky z plastu případně kovové.

Výrobcí: různí.

UPLATNĚNÍ: Pro roznesení přílačné síly kotvících prvků do větší plochy při bodovém kotvení izolační fólie k podkladu.
5. KONSTRUKČNÍ USPOŘÁDÁNÍ IZOLAČNÍHO POVLAKU

5.1 HLAVNÍ KONSTRUKČNÍ ZÁSADY

Při navrhování skladby, celkového uspořádání a řešení jednotlivých detailů izolace je třeba vždy vycházet ze specifických vlastností užitého izolačního materiálu a technologických možností jeho zpracování v daných podmínkách.

Izolační povlak systému FATRAFOL-H může být dle potřeb konstrukčního řešení a technologie výstavby objektu zcela rovnocenně proveden jako izolace z vnější nebo vnější strany chráněné konstrukce. Izolační povlak systému FATRAFOL-H může být dle potřeb konstrukčního řešení a technologie výstavby objektu zcela rovnocenně proveden jako izolace z vnější nebo vnější strany chráněné konstrukce. Izolační souvrství musí být vždy v celé ploše tvořeno fóliovým izolačním povlakem oboustranně chráněným před mechanickým poškozením (další manipulací, pohyby a tlakem stavby, drsností povrchů přilehlých vrstev) ochrannou textilií. Textilii lze vypustit pouze v případě, že přilehlý povrch je tvořen materiálem obdobných ochranných vlastností, například deskami z minerálních vláken.

Izolační povlak stavebního objektu se klade na podklad pokud možno zcela volně bez jakéhokoliv spojení s podkladem. Pouze na sklonitých a svislých plochách, kde by hrozilo sesunutí, se izolace k podkladu kotví, a to v závislosti na výšce stěn buď pouze při horním okraji, nebo i v několika úrovních nad sebou. Kotvení k podkladu může mít charakter liniového kotvení (souvislé uchycení v přímce) nebo bodového kotvení. Volné uložení izolační fólie mezi kluznými separačními vrstvami ochranné textilie je nezbytné pro umožnění dotvarování izolace při sedání stavby, nebo při jejich dilatačních pohybech, bez nebezpečí jejího poškození místním nadměrným mechanickým namáháním.

Izolační povlak stavby se vytváří pevným a naprosto vodotěsným spojením jednotlivých pásů izolační fólie. Spojování fólie navzájem (horkovzdušný svar, „studené svařování“ rozpouštědlem THF, svar horkým klínem, extruzní svař s přídavným materiálem) umožňuje vytvořit naprosto homogenní spojení o pevnosti dosahující nejméně 80 % pevnosti spojované fólie. Těsnost spoje je dána technikou a pečlivostí jeho provedení a souvisí s dodržením předepsané šířky přesahu fólie a technologických podmínek při spojování. U PVC-P fólií lze těsnost pojištění nanesením pojistné zálivky na okraj spoje.

5.2 DETAILY KONSTRUKČNÍHO ŘEŠENÍ

5.2.1 PODKLADNÍ VRSTVA

Bezprostřední podklad izolačního souvrství (viz příloha - obrázek 1) může dle okolností konkrétní stavby tvořit buď vrstvu betonu, případně cihelné zdířko opatřené cementovou omítkou, nebo žlutněný náspyp štěrkopísku, který je vhodný zejména v agresivním vodním prostředí.

U izolovaných objektů rozdělených dilatačními spárami je nutné, aby v rovině pracovní spáry byla shodná s rovinou izolační fólie. Potenciální mechanická poškození, která by mohla připadnout stavbě, je vyvrcholení násypu vodního povrchu, které může být vyvrcholení násypu vodního povrchu, které může řešit fungovat jako izolace z vnější strany chráněné konstrukce. Izolační fólie musí být vždy v celé ploše tvořena fóliovým izolačním povlakem oboustranně chráněným před mechanickým poškozením (další manipulací, pohyby a tlakem stavby, drsností povrchů přilehlých vrstev) ochrannou textilií. Textilii lze vypustit pouze v případě, že přilehlý povrch je tvořen materiálem obdobných ochranných vlastností, například deskami z minerálních vláken.
70 °C.

V případech, kdy se předpokládá zvýšené mechanické namáhání izolačního povlaku, doporučuje se volit tloušťky fólie o jeden stupeň vyšší, tj. 1,0 mm; 1,5 mm a 2,0 mm.

Izolace proti vlhkosti pórovitého prostředí (zemní vlhkost) se navrhují tam, kde se nemůže vyskytovat stěkající nebo tlaková (ani zadržená) voda a okolní zemina je propustná.

Hranicí mezi propustnou a mělo propustnou zemnou je hodnota součinitele propustnosti zeminy

\[K = 1.10^{-4} \text{ m.s}^{-1}. \]

Na vodorovných nebo jen málo sklonitých plochách podzemních stropních konstrukcí se i při hydrofyzikálním namáhání vlhkostí navrhují izolace proti tlakové vodě.

Izolace proti vodě stěkající po povrchu konstrukcí nebo prosakující horninovým prostředím se navrhují zemina je propustná.

Izolace proti vodě tlakové se navrhují pod úrovní maximální hladiny podzemní vody a nad touto hladinou do výšky minimálně 300 mm.

O tloušťce použité fólie rozhoduje intenzita předzemina je propustná.

Izolace proti tlakové vodě se navrhují také v případě, že je objekt zakládán v nepropustné zemíně, tj. se součinitelem propustnosti menším než \[1.10^{-4} \text{ m.s}^{-1}, \]

(např. jíl, jílovité hlíny apod.) a to bez zřetele na to, byla-li zajištěna hladina podzemní vody či ne. Výjimkou jsou pouze případy, kdy je zajištěno trvalé odvodnění nebo se protínajícího prostředí.

Izolace proti tlakové vodě se navrhují pod úrovní maximálníhladiny podzemní vody a nad touto hladinou do výšky minimálně 300 mm.

O tloušťce použité fólie rozhoduje intenzita předzemina je propustná.

Izolace proti vodě stěkající po povrchu konstrukcí nebo prosakující horninovým prostředím se navrhují zejména pro nadzemní konstrukce se sklopností do více úrovních nad sebou dle optimálních roztečí pracovních etap nebo výšky lešení, které je k dispozici. Přídavné kotvení lze provést kotvicím prvky s podložkou uprostřed pásu s následným překrytím kotvení záplatou.

Kotvení fólií z PVC-P se provádí zpravidla pomocí liševých účinných pásků šířky 50 mm a to buď z poplastovaného plechu, nebo z houževnatého PVC (nekorodující prvek), k podkladu připevněnými zatoulacími rozpěrnými nýty přes podkladní ochrannou textilii, kterou tak současně přidržují na stěně. Izolační fólie se k takto osazeným úchytům pásků souvisle přivaří horkým vzduchem.

Kotvení fólií z polyolefinů se provádí bodově v okraji pásu s následným převařením kotvicím prvku s podložkou dalším pásem fólie. Tento způsob je možno uplatnit i pro fólie z PVC-P.

V případě provádění tlakové izolace je nutné v průsečíku dvou rovin podkladu izolace, kde vzniká kotvení pro fólii podkladní ochrannou textilii, kterou tak současně přidržují na stěně. Izolační fólie se k takto osazeným účinným páskům souvisle přivaří horkým vzduchem.

5.2.3 KOTVENÍ IZOLAČNÍHO POVLAKU K PODKladu

V místě přechodu vodorovné izolace na svislou se doporučuje u PVC-P fólií přikotvení vodorovné izolace k podkladu nejlépe pomocí nekorodujícího novodurového profilu, k němuž se následně přivaří fólie vytvářející svislou izolaci (viz příloha - obrázek 6a).

Na vodorovných a měrně sklonitých plochách se izolační soustruh se v souladu s konstrukčními zásadami zpravidla k podkladu nekotví. Na sklonitých a obývá plochách, kde hrozí sesunutí izolace vlastní tříhou nebo následnou manipulací na ni, postačí obvykle zakotvení při horním okraji plochy. Obdobně i u vodorovných ploch výšky do 5 m postačí jedině dočasně zakotvení (viz příloha - obrázek 7a) nebo ukončovací kotvení (viz příloha - obrázek 2a, 2b) na horním okraji. U stěn výšky přes 5 m je nutné přidavné kotvení ve více úrovních nad sebou dle optimálních roztečí pracovních etap nebo výšky lešení, které je k dispozici. Přídavné kotvení lze provést kotvicím prvky s podložkou uprostřed pásu s následným překrytím kotvení záplatou.

Kotvení fólií z PVC-P se provádí zpravidla pomocí liševých účinných pásků šířky 50 mm, a to buď z poplastovaného plechu, nebo z houževnatého PVC (nekorodující prvek), k podkladu připevněnými zatoulacími rozpěrnými nýty přes podkladní ochrannou textilii, kterou tak současně přidržují na stěně. Izolační fólie se k takto osazeným úšipům pásků souvisle přivaří horkým vzduchem.

Přídavné kotvení lze provést kotvicím prvky s podložkou uprostřed pásu s následným překrytím kotvení záplatou.

Kotvení fólií z polyolefinů se provádí bodově v okraji pásu s následným převařením kotvicím prvku s podložkou dalším pásem fólie. Tento způsob je možno uplatnit i pro fólie z PVC-P.

V různé ochranné vrstvě textilie se na vodorovných stěnách pokud možno zavěšuje na celou výšku volně nebo se v případě nutnosti kotví k fólii bodově vhodným polyuretanovým tmelím.

5.2.4 ZESÍLENÍ KOUTŮ A HRAN

V případě provádění tlakové izolace je nutné v průsečíku dvou rovin podkladu izolace, kde vzniká kotvení (viz příloha - obrázek 1a) nebo zadržené horninové prostředí, k němuž se následně přivaří fólie stěkající nebo tlaková (ani zadržená) voda a okolní zemina je propustná.

Hranicí mezi propustnou a mělo propustnou zemnou je hodnota součinitele propustnosti zeminy

\[K = 1.10^{-4} \text{ m.s}^{-1}. \]

Na vodorovných nebo jen málo sklonitých plochách podzemních stropních konstrukcí se i při hydrofyzikálním namáhání vlhkostí navrhují izolace proti tlakové vodě.

Izolace proti vodě stěkající po povrchu konstrukcí nebo prosakující horninovým prostředím se navrhují zejména pro nadzemní konstrukce se sklopností do více úrovních nad sebou dle optimálních roztečí pracovních etap nebo výšky lešení, které je k dispozici. Přídavné kotvení lze provést kotvicím prvky s podložkou uprostřed pásu s následným překrytím kotvení záplatou.

Kotvení fólií z polyolefinů se provádí bodově v okraji pásu s následným převařením kotvicím prvku s podložkou dalším pásem fólie. Tento způsob je možno uplatnit i pro fólie z PVC-P.

Vrchní ochranná vrstva textilie se na vodorovných stěnách pokud možno zavěšuje na celou výšku volně nebo se v případě nutnosti kotví k fólii bodově vhodným polyuretanovým tmelím.

FATRAFOL-H

Izolace spojůních částí staveb

12/2004

strana 31
5.2.5 ETAPOVÁ NAPOJENÍ IZOLACE

Pro každé etapové napojení je vždy nutno ponechat dostatečně široký volný okraj fólie, k němuž bude později připojena další část izolace. Toto dočasné ukončení izolace musí být důkladně ochráno před poškozením stavební činností nejlépe ochranným cementovým potěrem z hubeného betonu či zvýšením izolační přizdívky, která bude před pokračováním další etapy odstraněna. Při návrhu úpravy dočasného ukončení izolace v místě etapového spoje je nutno brát v úvahu i předpokládanou dobu přerušení prací.

5.2.6 UKONČENÍ IZOLAČNÍHO POVLaku

Ukončení izolace (její horní okraj), pokud není vodotěsně napojena na jinou konstrukci z vodotěsného materiálu, je dle normy nutno provádět ve výšce nejméně:

- ■ 300 mm nad upraveným terénem (u izolací podzemních částí objektů) nebo nad maximálně možným dosahem stěkající vody (u izolací podlah).
- ■ 300 mm nad maximální hladinou v nádržích nebo jímek.

Ukončení izolace na svislé izolaci na dříve položenou vodorovnou izolaci se provádí tzv. „zpětným spojem“ a to buď v patě svislé stěny nebo nad tzv. „nízkou vanou“ nad základovou deskou (viz příloha - obrázek 5a (I. etapa) a 5b (II. etapa)).

V případě provádění etapového napojení vodorovné izolace na dříve provedenou svislou izolaci se provádí v I. etapě dočasné přikotvení svislé izolace na horním okraji (viz příloha - obrázek 7a) a po vytvoření vodorovné příčky se provede napojení svislé izolace na položenou vodorovnou izolaci (viz příloha - obrázek 7b).

5.2.7 PROSTUPY IZOLACÍ

Po obvodu všech prostupujících těles musí být vždy vytvořeno vodotěsné spojení izolace s tímto tělesem. U izolací proti vodě, které budou nebo mohou být namáhány hydrostatickým tlakem vody, se napojení připouští pouze sevřením izolace mezi pevnou a volnou ocelovou přírubu (viz příloha - obrázek 10 a 11) nebo pásnicí (viz příloha - obrázek 14). V místě sevření se izolace zesiluje přídavným prvkem (manžetou) z téže fólie (Limec druž 13) a podtěsněním vrstvou PU tmelu.

V případě potrubí opatřeného pevnou přírubou s materiálu kompatibilního s použitým druhem fólie, je možné těž izolací napojit přímým přivařením k přírubě, nebo prostupující trubce (viz příloha - obrázek 12a).

5.2.8 DILATAČNÍ SPÁRY

V místě přechodu izolačního povlaku přes dilatační spáru stavební konstrukce není třeba vytvářet žádnou dilatační úpravu izolační vrstvy z fólie, neboť její průtažnost spolu s volným uložením položí mezi ochrannými textiliemi vylučuje nebezpečí porušení fólie i při extrémních pohybech konstrukce. Izolační povlak se v prostoru dilatační spáry pouze dočasně přikotvení, pokud se v místě sevření spáry funguje izolační povlak a pro přítomnost vysokého tlaku, který by mohl způsobit vznik dobré vodotěsné části z izolačního povlaku (viz příloha - obrázek 13a). Předpokládá-li se v dilatační spáře posun větší než 10 mm namáhající izolační povlak na stíh, je nutno podkladní i ochrannou vrstvu v prostoru spáry doplnit pásem ze tkaniny, který by mohl mít na paměti projektant.

U dilatačních spář spáry podložené tkaninou se přístupem vytvořením manžety z fólie v místě sevření spáry s povrchem prostupujícího tělesa vytvořením manžety z fólie (Limec druž 13) a podtěsněním vrstvou PU tmelu (viz příloha - obrázek 13b).
5.2.9 OCHRANNÁ VRSTVA

Dokončená izolace z fólie musí být vždy ihned po přejímce pokryta celoplošně ochrannou vrstvou textilie ze syntetických vláken a následně pak další plošnou stavební konstrukcí nebo vrstvou stavební hmoty pro zajištění ochrany před mechanickým poškozením. Před prováděním zásypů kolem objektu lze pro vnější fóliový povlak, překrytý geotextilií, použít jako následnou finální ochranu i profilovanou fólii (viz příloha - obrázek 8 a 9). Minimální plošná hmotnost textilie je v těchto případech 300 g.m⁻².

Na vodorovných a šikmých plochách se finální ochrannou vrstvu fóliového povlaku, překrytého geotextilií, provádí většinou z dilatovaného cementového potěru nebo betonové mazaniny o tloušťce, ve které bude bezpečně odolávat předpokládanému stavebnímu provozu, ale nejméně 50 mm (u izolace z fólie Ekoten nejméně 100 mm).

Na vodorovných a šikmých plochách se finální ochranná vrstva fóliového povlaku, překrytá geotextilií, chrání před mechanickým poškozením od zásypů cihelnou přízdiwkou, tuhými deskovými prvky nebo případně profilovanou fólií, která v případě vysokého radonového indexu plní i funkci odvětrávací, čímž je v souladu s normou zajištěno kombinování protiradonových opatření (viz příloha - obrázek 8).

Masivní ochrana svislé izolace nemusí být zřizována při použití zásypu z těženého štěrkopísku bez ostrohranných příměsí, ukládaného způsobem vylučujícím poškození izolace.

Při delším přerušení provádění izolace (např. v místech pracovních spor, etapových napojení apod.) musí být navržena ochrana izolace proti provozním vlivům při realizaci stavby dočasnou (provizorní) vrstvou nebo konstrukcí, kterou je možno před pokračováním prací odstranit bez poškození izolace. Ochrana v nádržích a jímkách z betonové moniérky tvořící samostatnou vnitřní konstrukční vrstvu objektu musí být zajištěna proti jejímu odklonění nebo odtržení vhodnou konstrukční úpravou nebo spojením moniérky se svislou podkladní konstrukcí izolace ocelovými spinacími kotvami.

6. POSTUP PŘEDVÝROBNOU TECHNICKÉ PŘÍPRAVY AKCE

Podkladem pro přípravu akce může být buď projekt stavby nebo výsledek osobní prohlídky a zaměření obvodu.

Pro řádnou technickou přípravu jsou důležité zejména tyto údaje:
- plocha izolace s rozdělením na plochy vodorovné a svislé, případně šikmé;
- délka vodorovných a svislých koutů a hran podkladu;
- počet záhonů a nároží podkladu;
- délka a způsob ukončení izolace na svislých stěnových konstrukcích;
- délka dilatačních spár objektu a očekávaný rozsah pohybu plochy;
- údaje hydrogeologického a radonového průzkumu;
- specifikace korozního prostředí;
- požadavky na etapové provádění izolací;
- údaje zprávy o stavební hmotě;
- specifikace materiálů;
- výpočet celkových spotřeb životního obvodu;
- centový rozpočet.

Výstupem přípravných prací každé akce jsou pak následující přípravné podklady:
- vzorový řez skladbou izolace;
- výkresy detailů ukončení a napojení izolace;
- specifikace materiálů;
- výpočet celkových spotřeb životního obvodu;
- cenový rozpočet.

Vlastní příprava akce zahrnuje zejména tyto úkony:
- vymezení požadavků na úpravu podkladu;
- určení optimální skladebné a dimenzování izolačního povlaku;
- výpočet plochy jednotlivých skladeb;
- výpočet celkové délky zasílení izolace;
- stanovení potřebného počtu a typů prostorových tvarovek;

7. TECHNOLOGICKÉ POSTupy

Základem izolačního systému FATRAFOL-H je fólie oboustranně chráněná technickou textilií. Na vodorovných plochách se toto souvrství ukládá zcela volně, na plochách svislých a šikmých je v souladu s konstrukčními zásadami (článek 5.2.3) kotveno k podkladu. Na přípravně podkladní vrstvy se nejprve položí podkladní textilie, pak se provede vlastní izolační povlak z fólie, který se po přezkoumání všech spojů zakryje opět ochrannou vrstvou (viz příloha - obrázek 8).

Kromě vlastní fólie jsou k vytvoření izolačního systému potřebné doplňkové izolační materiály (fóliové tvarovky, tmely apod.) a pomocné materiály (ochrané textilie, úchytné prvky apod.).
7.1 **VNĚJŠÍ PODMÍNKY PROVÁDĚNÍ IZOLAČNÍCH PRACÍ**

Provádění izolací z fólií je možné už od teplot okolního vzduchu -5°C. Pokud teplota okolního vzduchu poklesne pod +15 °C, musí být vzájemné spojování fólií prováděno výhradně horkým vzduchem. Za chladného počasí se doporučuje izolační fólie před pololízením temperovat ve vyhřávajících prostorách. Při dešti a sněžení je nutno práce přerušit.

V místě kládění fólie se nesmí kouřit a přibližovat se s otevřeným ohněm.

Do doby vytvoření řádné ochrany izolace je třeba vyklouzit z izolační fólie před pololízením. Před náběhem fólie do izolačního povlaku se stíní cizí náhodou přítomné části fólie.

7.2 **ÚPRAVA PODKLADNÍCH VRSTEV**

Podkladní vrstvy musí svým provedením (rovinnost, únosnost apod.) splňovat požadavky uvedené v článku 5.2.1.

V místech předepsaných projektem musí být v podkladu zabudovány pevné příruby trubních prostupů (případně ocelové pásnice), a to tak, aby jejich horní plocha líčovala s povrchem podkladu (viz příloha - obrázek 10, 11, 14). U prostupů musí být dodržena minimální odstupová vzdálenost - viz čl. 5.2.7.

Před započetím izolačních prací musí být povrch podkladu pečlivě zameten a zbaven všech cizích těles (hřebíky, úlomky skla, kameny, zbytky malty apod.). Podklad může být vlhký, nesmí však na něm stát voda, sníh a led.

Ocelové podkladní plochy musí být zbaveny zbytků kovu po svařování a ostré vyčnívající hrany musí být zbroušeny.

7.3 **KLADENÍ TEXTILNÍCH VRSTEV**

Podkladní textilní vrstvy, tvořící součást izolačního souvrství, se na podklad kladou volně s přesahy širokými minimálně 50 mm. Orientace jednotlivých pásů textilie a jejich přesahů není rozhodující, důležité je pouze, aby podklad byl ochrannou vrstvou zcela pokryt bez nebezpečí posunu z polohy.

Na vodorovných plochách se textilie zásadně nekotví, pouze se dle potřeby na okrajích provizorně přitěžuje proti vlivu větru. V větrně chlazných plochách se v podkladní vrstvě textilie nejprve dočasně mechnicky kotví pomocí kotvících prvku v podkladu, a to dle okolností přibitím přes prkno, nebo přehnutím přes hranu zdiva a zatížením, následně se pak řádně zakotví úchytnými prvky vlastního fóliového izolačního povlaku.

7.4 **MONTÁŽ LINIOVÝCH ÚCHYTNÝCH PRVKŮ SVISLÉ IZOLACE**

Kotvení svislé izolace lze provádět podle typu fólie pomocí liniových úchytných prvků nebo bodovým kotvením.

7.4.1 **MONTÁŽ LINIOVÝCH ÚCHYTNÝCH PRVKŮ**

Liniovými úchytnými prvky pro kotvení svislé izolace z PVC-P fólií jsou dle okolností buď pásky z houževnatého PVC NOVODUR (užívají se zejména pod hladinou podzemní vody), pásky z poplastovaného plechu (užívají se nad hladinou podzemní vody) a profilované kotvení se stěnovými lišty (pro uchycení a lemování začínající vrstvy izolačního povlaku nad terénem nebo nad maximální možnou hladinou vody v nádržích).

Úchytné prvky se připevňují k pevné podkladní vrstvě z betonu nebo omítnutého zdiva bodovým kotvícími zatloukacími rozpěrými nýty v rozteči cca 200 mm, ostatní liniové úchytné prvky s roztečí cca 350 mm. Použití jiných kotvících prvků je třeba nejprve odzkoušet z hlediska pevnosti zakotvení a hladkosti konečného povrchu (za vysloveně nevhodné se považuje přestřelení ocelovými hřebíky).

Úchytné prvky se osazují po pokrytí podkladu podkladní ochrannou textilií, kterou tak současně definitivně fixují ve vrstvě. Montáž úchytných prvků do masivních podkladů spočívá v předvrtávání otvorů vidívkovým vrtákem do hloubky dle použité fólie v průřezu cca 200 mm, ostatní liniové úchytné prvky s roztečí cca 350 mm. Použití jiných kotvících prvků je třeba nejprve odzkoušet z hlediska pevnosti začínající vrstvy izolačního povlaku nad terénem nebo nad maximální možnou hladinou vody v nádržích.

Úchytné prvky se osazují po pokrytí podkladu podkladní ochrannou textilií, kterou tak současně definitivně fixují ve vrstvě. Montáž úchytných prvků do masivních podkladů spočívá v předvrtávání otvorů vidívkovým vrtákem do hloubky dle použité fólie v průřezu cca 200 mm, ostatní liniové úchytné prvky s roztečí cca 350 mm. Použití jiných kotvících prvků je třeba nejprve odzkoušet z hlediska pevnosti začínající vrstvy izolačního povlaku nad terénem nebo nad maximální možnou hladinou vody v nádržích.

Úchytné prvky se osazují po pokrytí podkladu podkladní ochrannou textilií, kterou tak současně definitivně fixují ve vrstvě. Montáž úchytných prvků do masivních podkladů spočívá v předvrtávání otvorů vidívkovým vrtákem do hloubky dle použité fólie v průřezu cca 200 mm, ostatní liniové úchytné prvky s roztečí cca 350 mm. Použití jiných kotvících prvků je třeba nejprve odzkoušet z hlediska pevnosti začínající vrstvy izolačního povlaku nad terénem nebo nad maximální možnou hladinou vody v nádržích.
Dle potřeby lze délku lišt libovolně upravit řezem, nebo je v koutech a na hranách ohnout (u pásů z PVC po předchozím nahřátí horkým vzduchem).

U ukončovacích stěnových lišt z tvarovaného poplastovaného plechu se po jejich osazení na stěnu zatmí z příslušnou klinovitou spárou mezi vyhnutým horním okrajem lišty a podkladem polyuretanovým tmelem (viz příloha - obrázek 2b).

Liniové kotvení izolační fólie z modifikovaných polyolefinů se provádí na poplastovaný plech eventuálně na pásy z PE-HD desek tl. 4-8 mm, šířky 50 mm, které se k podkladu upevní obdobným způsobem jako ostatní liniové úchytné prvky.

7.4.2 MONTÁŽ BODOVÝCH ÚCHYTNÝCH PRVKŮ

Bodové kotvení izolační fólie na svislých plochách se provádí v okraji pásu minimálně po 1 m délky, po každých 5 m pak i ve středu pásu minimálně 2 kotvami, které se následně překryjí Záplatou druh 12 z daného typu fólie. Kotvení v okrají pásu se překryje dalším pásem fólie tak, aby šířka homogenního horkovzdušného homogenního svaru vedle kotev u PVC-P fólii odpovídala minimální šířce 30 mm.

7.5 KLAĐENÍ IZOLAČNÍ FÓLIE

Pásy izolační fólie se na podkladní ochrannou textilní vrstvu rozvinou z rolí po předchozím zahřátí řezem a případně odklíznutím. Mezi sousedními pásy fólie musí být čelní přesahy vzájemně posunuty (tzv. kladení na vazbu) nejméně o 100 mm. Orientace fóliových pásů a jejich přesahů vůči stavbě a směru působení vody není rozhodující. U svislých izolací se jednotlivé pásy fólie orientují zpravidla svisle.

Pásy fólie ležící v konečné správné poloze se na svých okrajích vzájemně spoji a na svislých plochách především připojí k předem osazeným úchytným prvkům.

7.6 SPOJOVÁNÍ IZOLAČNÍCH FÓLII

7.6.1 KONSTRUKCE SPOJŮ

Používané typy spojů včetně jejich konstrukcí a minimálních rozměrů jejich částí v mm ukazuje obr. A, B, C, D.

![Obrázek A: Horkovzdušný přeplátovaný spoj bez zkušebního kanálu - jednoduchý svar.](image1)

![Obrázek B: Přeplátovaný spoj se zkušebním kanálem - dvoustopý svar.](image2)
7.6.2 PROVÁDĚNÍ SPOJŮ

7.6.2.1 Spojování fólií z PVC-P

Veškeré spoje izolační fólie mezi jednotlivými pásy navzájem se mohou provádět buď horkovzdušným svarem nebo studeným spojem pomocí rozpouštědla tetrahydrofuran (THF). V případě izolací proti tlakové vodě se doporučuje spoje provádět horkovzdušným svařováním. Spoje izolační fólie s prostorovými tva-rovkami a s úchytnými pásky a lištami se provádějí výhradně horkým vzduchem.

Spojování pomocí THF (ředidlo L-494) lze provádět pouze na otevřeném prostranství za teploty ovzduší nad +15 °C a za suchého počasí. Svařování horkým vzduchem je naproti tomu možné i v uzavřených pro-storách a za teploty ovzduší do -5 °C (při nízkých tep-lotách je postup svařování pouze poněkud pomalejší a je nutno upravit i svařovací teplotu).

7.6.2.1.1 Spojování horkým vzduchem

Svařování fólií horkým vzduchem spočívá v zahřátí spojovaných povrchů do plastického stavu proudem horkého vzduchu vystupujícího z hubice horkovzdušné svá-řečky a v následném stlačení spoje. Dle postupu roz-tavování hmoty se svářečka posouvá ve směru podélné osy spoje a spojované okraje se vzájemně stlačují ručním válečkem. Pro spojování přesahů fólií se používá svařovací hubice šířky 40 mm, zasunuté do spoje tak, aby okraj hubice přečníval asi o 3 - 4 mm a šířka homogenního spoje byla minimálně 30 mm.

7.6.2.1.2 Spojování pomocí tetrahydrofuranu

Spojování pomocí THF spočívá v nalepování spojo-vaných povrchů fólií rozpouštědlem a v následném stlačení spojených fólií. Okraje spojených pásů fólie musí být v místě spoje čisté, bezprašné a suché. Rozpouštědlo se vnáší mezi okraje fólií plochým štět-cem. Těsně za postupně posouváným štětcem se obě spojované plochy vzájemně stlačí tak, aby THF vytvořil souvislý film bez vzduchových bublin v šíři celého přesahu. Potřebného stlačení spoje se dosáhne na vodorovných plochách nejlépe zatižením sáč-kem s pískem, který se posouvá po provedeném spoji těsně za štětcem a přebytek rozpouštědla se tak vytlačuje ze spoje dopředu a do stran. Na svislých a šikmých plochách se postupuje při spojování po-moci THF vždy pod předem naplněnou nádobou. Spoj se stlačuje ru-kou těsně za štětcem a přebytek rozpouštědla se tak vytlačuje směrem vzhůru.

Je-li spojovaná fólie orosena kondenzovanou vzduš-nou vlhkostí, je nutno její povrch nejprve osušit a předehřát proudem horkého vzduchu nebo alespoň dů-kladně ořízut předem poušť. Šířka spoje provedené-ho THF musí být na celou šíři přesahu, to je nejméně 40 mm.

Při spojování fólií na netuhém podkladu (zemina, štěrkopísek) je nutno místo spoje vždy podložit tluho podložkou (např. plechovým páskem asi 200 mm a délky minimálně 2 000 mm) popotahovanou pod spojovaným místem v souladu s postupem spo-jování.

Ve styku tří spojovaných ploch (tzv. „T spoj“) je spoj nutno následně pojistit zálivkovou hmotou nebo pečlivě zatavit horkým vzduchem a zaválečkovat hranou ručního válečku. Konečná pevnost spoje provedeného pomocí THF je dosažena až po 24 hodinách.

7.6.2.1.3 Pojištění spoje pojistnou zálivkou

Po kontrole kvality a souvislosti provedených spojů se u izolací proti tlakové vodě musí zajistit jejich okraj pojistnou zálivkou, u izolací proti vodě stékající i povrchové se zajištění doporučuje. Zálivková hmota se na okraj spoje nanáší vytlačováním z PE lahvičky
7.6.2.2 Spojování fólií z PE-HD

Všechny spoje jednotlivých pásů izolačních fólií z PE-HD se provádí převážně svařováním tzv. horkým klínem a extruzivním svařováním. Dále je možné použít k tomuto účelu speciálně vyrobené horkovzdušné automaty.

7.6.2.2.1 Spojování horkým klínem

Spojování fólií tímto způsobem spočívá v natavení ploch obou protilehlých fólií horkovým klínem a následným svařováním. Obě fólie v přesahu se spojí pomocným (pozíčeným) klínem a extruzivním přístrojem, kdy roztavený materiál musí tvořit pravidelnou „housenku“, která se hubici přiláčí rovnoměrně v místě spojení a provádět častěji seřídit teploty v závislosti na okolních podmínkách.

7.6.2.2.2 Extruzivní svařování

Extruzivní svařování spočívá v roztavení a vytačování ní tavného materiálu shodného s izolační fólií a přitažení vytlačené tzv. housenky na spoj obou fólií. Tento způsob spojování se především doporučuje v nepříznivých podmínkách, kde vytvoření „horkého klínu“ a v místech vyžadujících zvláštní pozornost a pečlivé provedení mezi něž patří zvláštní opravování koutů, rohu, protus, opravné svařky apod. Pro snadnou vizuální kontrolu provedeného jištění má základová hmota barvu oflajovou s postraní vlastní fólie.

Přesah obou fólií ve spoji musí být minimálně 75 mm. Obě fólie v přesahu se spojí pomocným (pozíčeným) horkovzdušným svarem, který má funkci pouze pomocnou k udržení fólií v požadované poloze, k doběření přehnutu obou fólií bez návratů a klesání k hladině.

Před vlastním svařováním, nejdéle vždy 1 hodinu, musí se přebírat (vznovit) povrchní povrch a další propracovat na převážném povrchu fólie v části, kde se seřídí některé zvláštní podmínky. V případě nesprávněho provedení svařování se přebírat (vznovit) povrchní povrch a další propracovat na převážném povrchu fólie v části, kde se seřídí některé zvláštní podmínky.
riálu, způsobená tepelnou degradací, má v konečné fázi důsledek na kvalitu a pevnost provedeného spoje. Z tohoto důvodu se obecně doporučuje použití nižších svařovacích teplot (300 - 400 °C) a k tomu je nutno přizpůsobit i rychlost svařování.

Konečné pevnosti spoje je při spojování fólií z modifikovaných polyolefinů dosaženo až po 1 hodině.

7.6.2.3.2 Napojování fólií na jiné polyolefinické materiály

Fólie z modifikovaných polyolefinů jsou velmi dobře svářitelné horkým vzduchem nebo horkým klinem s fóliemi, deskami nebo jinými doplňkovými prvky vyrobenými z vhodných typů polyolefinů (PE-HD, PP). Toho lze s výhodou využít při vznášejícím napojování nebo ukončování izolací a opravování prostopů. Zde je však především u deskových materiálů na bázi PP nutná mechanická úprava povrchu jemným smrko-vým papírem a jeho následné odmaštění vhodným rozpouštědlem (izopropylalkohol, případně technický lik). Vlastní spojování se pak provádí až po úplném odpaření rozpouštědla za předem stanovených a od-zkušených optimálních svařovacích podmínek.

Poznámka: Orientační zkoušku pevnosti spoje v odlupování je na rozdíl od PVC-P fólií nutno provádět až po důkladném vychlazení spoje.

7.6.2.4 Spojování profilovaných fólií

Napojení drenážních fólií musí být provedeno s bočním přesahem min. 85 mm (tj. 3 řady nopků s roztečí 30 mm) a při podélném napojení s přesahem 150 mm (tj. 5 řad nopků s roztečí 30 mm). Nopky sousedních fólií musí do sebe zapadat.

Napojení ve směru podélně nesmí být u sousedních pásů provedeno na stejné úrovni, ale ve vzdálenosti min. 450 mm od sebe.

7.6.2.4.1 Spojování volným přesahem

Fólie se napojuje pouhým přesahem bez slepení a utěsnění vzájemných spojů.

7.6.2.4.2 Spojování samolepící páskou

Vodotěsné a plynotěsné spojení drenážních fólií (pro-tiradonová ochrana) zajišťuje samolepící pásek, ve výrobě nanesená k jednomu okraj fólie na stranu nopků.

Sousední pásy fólie se k sobě na zkoušku s přede- pisaným přesahem přiloží - překontroluje se vzájemné zapadnutí nopků.

Při napojení bočním se okraj fólie Technodren, opatřený samolepící páskou, klade jako horní. Po zkušené odhrnutí a za postupného snímaní ochranné fólie ze samolepící pásky se již k položenému pásu opět přikládá a v místě přesahu plnoplošně dotlačuje.

Kopírování ve směru podélnému se použije nejméně jeden pruh zvlášť dodané oboustranné samolepící pásky. Nalepi se na již položený páš drenážní fólie. Lepí se v místě přesahu přes celou šířku pásu na rov-né lomky mezi prohýbáním. Po sejmutí ochranné fólie ze samolepící pásky se obě drenážní fólie ve směru přičném spojí.

Správné provedení spojů musí být průběžně kontro- lováno.

Stejným způsobem, jako podélné napojení, se realizují spoje pomocná a opravné.

7.6.2.4.3 Spojování za použití tmelu

Provádí se obdobně jako spojování samolepící pásek. V místě spoje se na rovné lomky mezi prohýbáním je již položené drenážní fólie pistoli vytlačí souvislé housenka tmelu. Obě drenážní fólie se k sobě přiloží a domáčknou na doraz.

7.6.3 STAVENIŠTNÍ ZKOUŠKY KVALITY SPOJŮ

Vnější kvalita všech spojů fóliového izolačního systému musí být vizuálně před zakrytím ochrannou vrstvou textilie pečlivě zkontrolována. Objednatel izolačních prací může podle charakteru stavby požadovat provedení zkoušek těsnosti spojů dále uvedenými metodami. Z hlediska malého rozšíření již řešeno jako je kontrola kvality spojů vysokým napětím nebo ultrazvukem.

7.6.3.1 Vnější kvalita spojů

Vnější kvalita spojů se posuzuje vizuálně. Kontrola se provádí po celé délce spoje přičemž se posuzuje:
- tvrd a jednotnost průběhu svaru,
- způsob zaválečkování v místě spoje,
- souosost a rovinnost hrany přesahu,
- v okolním povrchem fólie v místě svaru.

Poznámka: Vruby a rýhy jsou přípustné pouze do hloubky 10 % tloušťky fólie a to v omezeném rozsahu. Nepravidelné většího rozsahu se musí opravit přeplátové přidáním kuse fólie.
7.6.3.2 Zkoušení vodotěsnosti spojů

7.6.3.2.1 Vakuová zkouška spojů provedených přeplátním bez zkušebního kanálu

Provedení zkoušky
Vakuová kontrola se smí provádět až nejméně 1 hodinu po provedení vlastního spoje horkovzdušným svářením a až nejméně 24 hodin po provedení spoje pomocí THF.

Zkoušené místo se nejdříve zbaví prachu a nečistot. Místo spoje se natře indikační kapalinou tvořící bubliny (saponátový roztok, doporučujeme roztok Jaru ve vodě). Zkušební zvon se umístí nad zkoušený svar a přitiskne se k podkladu. Test se provádí při podtlaku 0,2 baru (0,02 MPa) u fólií z PVC-P a 0,4 baru (0,04 MPa) u fólií z PE-HD a z PO. Tato hodnota by měla být konstantní po dobu 10 sekund. Indikační kapalina nesmí tvořit bubliny.

7.6.3.2.2 Tlaková zkouška dvoustopých spojů

Tato zkouška umožňuje testování celkové délky spoje v jedné operaci. Zkouška přetlakem se smí provádět až nejméně 1 hodinu po provedení vlastního svaru. Druhý konec svaru je utěsněn příčným svářením nebo jiným vhodným způsobem. Zkušební tlak by měl být přizpůsoben teplotě fólie a okolí, šířce zkušebního kanálu, tloušťce a materiálu svařované fólie. Po natahkování kanálu se počke cca 5 minut na dotvarování spojů a vyrovnání tloušťky vzduchu a následujících 10 minut se sleduje pokles zkušebního tlaku. Po tuto dobu nesmí tlak klesnout o více jak 20 % původní hodnoty. Kládou náklad vzniklý tlak se potvrdí otevřením druhého konce spoje, kdy tlak musí klesnout na nulu a potvrdí se tak, že je spoj průchodný.

7.6.4 VYHODNOCENÍ VÝSLEDKŮ ZKOUŠEK

Výsledky všech provedených zkoušek se doporučuje zaznamenat v protokolech, které jsou přílohou DVS 2225 ÓNORM S 2076, za účelem možnosti provedení jejich kontroly. Tyto protokoly zpravidla tvoří součást předávacích podkladů. V případě pochybnosti o výsledcích zkoušek provedených na stavbě mohou být tyto zkoušky doplněny dodatečnými testy v laboratoři.

7.7 OPRAVOVÁNÍ DETAILŮ

Mezi detaily izolačního povlaku, vyžadující zvláštní pozornost a pečlivost provedení náleží zejména vytváření izolace, etapová napojení a opracování koutů, rohů, nároží a prostopů.

7.7.1 VYTUŽENÍ IZOLACE

Vytužení se provádí v případě tlakové izolace podél všech hran a koutu podkladu (viz příloha - obrázek 6b) a v přechodu povlaku nad dilatační spárou (viz příloha - obrázek 13a, 13b, 13c). Vytužení spočívá ve zdrojení izolační fólie v kritickém místě přidavným pásem fólie téhož druhu a tloušťky a spojení jeho okrajů se základní průběžnou fólií stejným způsobem jako se provádějí všechny ostatní spoje fólie (článek 7.6).

7.7.2 VYTUŽENÍ A DOTĚSNĚNÍ KOUTŮ, ROHŮ A NÁROŽÍ

V místech, kde se protínají kolmé roviny izolačního povlaku (maximální přípustná odchylka od pravého úhlu je ± 10°) a vytvářejí závory, roh nebo nároží, zůstávají vždy při jakémkoli způsobu vyskládání jak průběžně izolační fólie, tak i vytužujícího pásu oslabená místa spojů s šířkou přesahu menší než předepsaných 30 mm pro PVC-P a modifikované polyolefiny a 75 mm pro PE-HD. Tato kritická místa je proto nutno vždy na závěr (po provedení spojů základní fólie) dotěsnit speciálními prostorovými tvarovkami z fólie (vakuově tvarované díly Kužel a Vlnovec pro fólie z PVC-P a modifikovaných PO nebo Kout pro fólie z PE-HD). Tato kritická místa je proto nutno vždy na závěr (po provedení spojů základní fólie) dotěsnit speciálními prostorovými tvarovkami z fólie (vakuově tvarované díly Kužel a Vlnovec pro fólie z PVC-P a modifikovaných PO nebo Kout pro fólie z PE-HD).

7.7.2.2 VYTUŽENÍ A DOTĚSNĚNÍ KOUTŮ, ROHŮ A NÁROŽÍ

V místech, kde se protínají kolmé roviny izolačního povlaku (maximální přípustná odchylka od pravého úhlu je ± 10°) a vytvářejí závory, roh nebo nároží, zůstávají vždy při jakémkoli způsobu vyskládání jak průběžně izolační fólie, tak i vytužujícího pásu oslabená místa spojů s šířkou přesahu menší než předepsaných 30 mm pro PVC-P a modifikované polyolefiny a 75 mm pro PE-HD. Tato kritická místa je proto nutno vždy na závěr (po provedení spojů základní fólie) dotěsnit speciálními prostorovými tvarovkami z fólie (vakuově tvarované díly Kužel a Vlnovec pro fólie z PVC-P a modifikovaných PO nebo Kout pro fólie z PE-HD). Tato kritická místa je proto nutno vždy na závěr (po provedení spojů základní fólie) dotěsnit speciálními prostorovými tvarovkami z fólie (vakuově tvarované díly Kužel a Vlnovec pro fólie z PVC-P a modifikovaných PO nebo Kout pro fólie z PE-HD).

V místech, kde se protínají kolmé roviny izolačního povlaku (maximální přípustná odchylka od pravého úhlu je ± 10°) a vytvářejí závory, roh nebo nároží, zůstávají vždy při jakémkoli způsobu vyskládání jak průběžně izolační fólie, tak i vytužujícího pásu oslabená místa spojů s šířkou přesahu menší než předepsaných 30 mm pro PVC-P a modifikované polyolefiny a 75 mm pro PE-HD. Tato kritická místa je proto nutno vždy na závěr (po provedení spojů základní fólie) dotěsnit speciálními prostorovými tvarovkami z fólie (vakuově tvarované díly Kužel a Vlnovec pro fólie z PVC-P a modifikovaných PO nebo Kout pro fólie z PE-HD). Tato kritická místa je proto nutno vždy na závěr (po provedení spojů základní fólie) dotěsnit speciálními prostorovými tvarovkami z fólie (vakuově tvarované díly Kužel a Vlnovec pro fólie z PVC-P a modifikovaných PO nebo Kout pro fólie z PE-HD). Tato kritická místa je proto nutno vždy na závěr (po provedení spojů základní fólie) dotěsnit speciálními prostorovými tvarovkami z fólie (vakuově tvarované díly Kužel a Vlnovec pro fólie z PVC-P a modifikovaných PO nebo Kout pro fólie z PE-HD).
7.7.3 PROVÁDĚNÍ PROSTUPŮ

7.7.3.1 Prostupy izolací fóliemi z PVC-P

7.7.3.1.1 Prostup z PVC potrubí

Pro opracování prostupu (viz příloha - obrázek 12a) se použije límec z PVC-P druh 13 z příslušného dru- hu fólie. V límci (v případě prostupu většího rozměru v plošném přířezu z fólie o ∅ cca 250 mm větším než je ∅ prostupu) se nejprve nůžkami vystřihne kruhový otvor o cca ∅ 1/3 menší než vnitřní průměr prosto- pujícího potrubí. V okolí tohoto otvoru se fólie nahřeje horkým vzduchem a tvarovka se navlékne silnou na prostup. Tohoto se z původně plošného útvaru prosto- rové vytvaruje manžeta těsně obepínající prostupují- cí trubku. Tvarovka se zatlačí až k průběžné fólii po- vlaku, s nímž se po obvodu svaří. Toto vytvářená manžeta se na potrubí prodlouží ovinutým proužkem fólie šířky cca 100 mm. Současně s ovíjením prostu- pu se přivaří horkou páskou fólie. Je-li prostup řešen pomocí pevné a volné příruby

7.7.3.1.2 Prostupy z materiálu jiného než PVC (ocel, litina, keramika apod.)

Tento způsob prostupu nelze použít pro tlakovou izo- laci. Postup provádění se od předchozího liší tím, že se prostup musí před navařením pásku fólie ve výšce cca 70 až 120 mm od roviny prostupu opatřit vrstvou polyuretanového tmelu (viz příloha - obrázek 12b). Přídavná manžeta, která je ve své spodní části při- pevněna k límci z PVC-P horkým vzduchem, je po vychladnutí k prostupujícímu potrubí přitažena oce- lovou páskou. Jedná-li se o trubní prostup, na který nelze tvarovku navléknout (průběžné potrubí), zhotoví se tvarovka mimo prostup za použití jiného vhodného kruhového tělesa shodného nebo poněkud většího průřezu. Po- třebná tvarovka se po jedné straně rozřízně, nasadí se na prostup a v místě řezu se s přesahem nebo za po- užití přidavného pásu fólie opět svaří v jeden celek. Je-li volná příruba sestavena z dílů, nesmí být mezera mezi nimi větší než 1 mm.

7.7.3.1.3 Prostupy řešené pomocí plášťové trouby

7.7.3.1.4 Prostupy řešené pomocí plášťové trouby

7.7.3.1.5 Prostupy ocelové výztuže

Prostup ocelové výztuže se řeší v závislosti na hydro- fyzikálním namáhání hydroizolace. V oblasti namáhání zemní vlhkosti postačuje zatmelení kolem výztužného ocelového prutu pomocí PU tmelu - viz obrázek 15a. U hydroizolace proti vodě stékající nebo prosakující horninovým prostředím se opracování prostupu řeší pomocí manžety z hydroizolační fólie, která se k vý- ztuži přitáhne pomocí pásky z nerezavějící oceli - viz obrázek 15b. Prostup ocelové výztuže hydroizolaci proti tlakové vodě je nutno řešit pomocí pevné a volné příruby - viz obrázek 15c.

7.7.3.2 Prostupy izolací fóliemi z PE-HD

7.7.3.2.1 Prostupy z PE-HD potrubí

Protrubková pouzdra pronikající izolovanou plochou z fólie z PE-HD je nezbytné použít trubku z PE-HD ze shodného materiálu jako je vlastní izolace. Na tuto trubku se přivaří deska z PE-HD tloušťky 5 - 12 mm rozměru o cca 200 mm větším na každou stranu od pláště trubky, aby vznikla dostatečná plocha pro přivaření izolace. Tato deska s přivařenou trubou se přikotví k podkladu a k ní se přivaří průběžná fólie Všechny spoje se provádí extruzivním svařováním. Volný prostor mezi tímto trubkovým pouzdrem a vlast-
ním potrubím-produtovodem se utěsní předepsaným způsobem. Zpravidla zajišťuje dodavatel potrubín.

7.7.3.2 Prostupy z různorodých materiálů
Pokud se u prostupů izolací vyskytnou různorodé materiály (např. kov - PE-HD) je nutné tento detail řešit přichycením izolace mechanickým způsobem mezi pevnou a volnou příruby s dotěsněním vhodným tmelem - viz článek 7.7.3.1.3.

7.7.3.3 Prostupy izolací fóliemi z modifikovaných polyolefinů

7.7.3.3.1 Prostupy z PE-HD potrubí
Při provádění těchto prostupů se postupuje stejným způsobem jako při provádění prostupů fóliemi vyrobenými z PVC-P (viz čl. 7.7.3.1.1).

7.7.3.3.2 Prostupy z jiného materiálu než PE-HD
Řeší se obdobně jako prostupy u PVC-P fólií pomocí stahovací pásky (viz čl. 7.7.3.1.2) nebo pomocí pevné a volné příruby (viz čl. 7.7.3.1.3)

7.8 UKONČENÍ IZOLACE NAD TERÉNEM
Ukončení izolačního souvrství nad terénem musí být provedeno takovým způsobem, aby nedocházelo k zatékání vody za hydroizolaci.
Na obrázku 2a je schematicky znázorněno ukončení hydroizolace pod pohledovou ochrannou vrstvou tvorencí např. předsazeným fasádním obkladem. Klausickým řešením je ukončení izolace pod omítkou - viz obrázek 2b.

Při provádění izolace profilovanou fólií Technodren se fólie ukotvená pomocí vhodného kotvicího prvku ukončuje stěnovou lištou. Příklad ukončení Technodrenu pod omítkou - viz obrázek 16a, ukončení na lehkém zatepleném obvodovém plášti pak obrázek 16b.

7.9 OPRACOVÁNÍ SVĚTLÍKU NA SUTERÉNNÍM ZDIVU
Zvláštní pozornost vyžaduje ukončení izolace po obvodu světlíku na suterénním zdivu. Rešení detailu - viz obrázek 17.

7.10 ETAPOVÁ NAPOJENÍ
Tvoří-li izolace objektu izolační vanu, je možné ji provádět v rámci jedné etapy (viz příloha - obrázek 6a).

V ostatních případech je nutné organizovat provádění v závislosti na předpokládaném postupu práci, ale nejméně ve dvou pracovních etapách (viz příloha - obrázek 5a, 5b, 6a, 6b).

Základní podmínkou bezporuchového provedení izolace v místě etapových napojení je zajištění dostatečné ochrany provedené izolace před mechanickým poškozením.

Vlastní izolační povlak musí být vždy celý oboustranně chráněný netkanou textilií. Před mechanickým poškozením, které by mohlo být způsobeno staveništním provozem, se na vodorovných a šikmých plochách zpravidla navíc používá jako provizorní ochrana betonová mazanina. Rovněž lze použít fošny, železobetonové prefabrikáty apod.

Izolační vrstvy, přesahující budoucí obrys objektu (a v mnoha případech tedy i provizorní ochrannou vrstvu) je nutné chránit před poškozením během stavebních prací prkny nebo jiným vhodným způsobem.

Provizorní ochrannou (například vhodnou desku) je třeba chránit izolační vrstvy také při svařování kovové výztuže v jejich blízkosti.

Kromě provizorní ochrany před mechanickým poškozením je v mnoha případech nutné zajistit i provizorní mechanické přepevnění izolačního systému. Jak provizorní ochrana, tak mechanické přepevnění musí být navrženo a provedeno tak, aby bylo možné před prováděním dalších prací odstranit bez mechanického poškození izolace.

7.11 ŘEŠENÍ DILATAČNÍ SPÁRY
V místě, kde probíhá dilatace stavební konstrukce, musí být podkladní i definitivní ochranné vrstvy (nikoli ale technická textilie) rozděleny také dilatační spárou.

Podle předpokládaného posunu dvou dilatačních celků v místě spáry je nutné navrhnut taková konstrukční opatření, která vyloučí možnost poškození izolace při dilatačních posunech. Ve všech případech však musí být izolace v místě spáry zesílena přídavným pásem fólie stejnou šířkou, jako je šířka hlavní izolace. Šířka přídavného pásu závisí na kategorii hydrofyzikálního namáhání (viz příloha - obrázek 13a, 13b, 13c). Zdvojení izolace není nutno provádět při použití speciálního dilatačního profilu (viz příloha - obrázek 13d), i v tomto případě se však pro zvýšení bezpečnosti izolace jeho provedení doporučuje.

Pro lepší zabezpečení dilatace fólií a proti zatečení betonové směsi do textilie se doporučuje navic izolační souvrství chránit z vrchní strany jednoduchou PE fólií o tloušťce min. 0,1 mm a šířce 500 mm. Pro dilatační spáry musí být u namáhání stěkající vodou šířka přídavné fólie minimálně 250 mm, u tlakové izolace minimálně 400 mm.
7.12 OPRAVY POŠKOZENÝCH IZOLACÍ

Dojde-li k porušení celistvosti izolace jejím místním poškozením (mechanicky, vysokou teplotou nebo chemickým působením), proveďte se oprava překrytím poškozeného místa záplatou z téže fólie vhodné velikosti, přivařenou po obvodě horkým vzduchem (Záplata druh 12), nebo extruderem (pro fólie z PE-HD). Záplaty čtvercového nebo obdélníkového tvaru zhotovené na místě musí mít zkosené, případně zaoblené rohy. Před přiložením záplaty je nutno dokonale očistit fólii od všech nečistot (omytím vodou se saponátem, lihem apod.). Nelze-li fólii očistit, pak je vhodnější záplatu podsunout pod opravované místo s přiměřeným přesahem ve všech směrech a záplatu svařit s čistým spodním povrchem fólie.

7.13 HYDROIZOLAČNÍ POVLAKY STAVEB S KONTROLNÍM A SANAČNÍM SYSTÉMEM

U mimořádně exponovaných staveb a především tam, kde je uvažováno s využitím podzemních prostor na- cházejících se pod úrovní hladiny podzemní vody, lze zrealizovat hydroizolační povlak s kontrolním a sanačním systémem. Jejich konstrukce umožňuje trvalou kontrolu těsnosti hydroizolace po celou dobu životnosti stavebního díla (viz obrázek E).

7.13.1 ZÁSADY PROVÁDĚNÍ DVOUVRSTVÝCH HYDROIZOLACÍ

■ Obě hydroizolační vrstvy musí být provedeny ze stejného druhu fólie.
■ Každá z izolačních vrstev musí být provedena tak, aby mohla samostatně plnit funkci hydroizolačního systému.
■ Separační vrstva musí spolehlivě oddělit obě hydroizolační vrstvy. Žároveň musí umožnit dokonální prostop inkjektážní hmoty při případných sanacích.
■ Velikost a rozložení jednotlivých sektorů musí být určeno samostatným projektem s ohledem na složitost a členitost stavby.
■ Každý kontrolní sektor musí být propojen s vnějším prostředím dvěma ventily vodotěsné napojenými na hydroizolační vrstvu.
■ Umístění koncového ventila musí umožnit snadnou kontrolu těsnosti jednotlivých sektorů i po dokončení stavby a případnou inkjektáž těsnicí hmotou.
■ Těsnicí inkjektážní hmota musí být předem schválena výrobcem hydroizolační fólie.

Obrázek E: Schéma uspořádání dvouvrstvého kontrolního systému.

7.13.2 ZÁKLADNÍ SKLADBA DVOUVRSTVÉHO SYSTÉMU

- ochranná cementová vrstva,
- ochranná netkaná technická textilie,
- hydroizolační fólie FATRAFOL 803,
- separační a drenážní geotextilie,
- hydroizolační fólie FATRAFOL 803,
- ochranná netkaná technická textilie,
- podkladní konstrukce.

7.13.3 ZKOUŠENÍ TĚSNOSTI JEDNOTLIVÝCH SEKTORŮ

Vakuové zkoušky vodotěsnosti spojů a plochy jednotlivých sektorů se provádějí po samostatné kontrole jednotlivých spojů (viz čl. 7.6.3) a následném osazení inkjektážních ventilů. Ventily se otevírají uzavíracími ventili, z nichž jeden má předřazen manometr s dělením na 0,01 bar. Pomocí vývěvy se ze zkoušeného sektoru vysává vzduch na podtlak minimálně 0,5 baru. Během vysávání se postupně kontroluje uzavíraním ventilu změna tlaku. Po ustálení tlaku se ventil uzavře a vývěva vypne. Zkoušený sektor je možno považovat za těsný, pokud po uplynutí následujících 10 minut nárůst tlaku není větší než 20 % dosaženého podtlaku (0,2 krát dosažený počáteční podtlak).
7.14 POKLÁDÁNÍ PROFILOVANÝCH FÓLIÍ

7.14.1.1 Pokládání fólie na vodorovných plochách

Profilovaná fólie se pokládá a spojuje bez mechanického upevnění. Pouze volné okraje položené fólie se doporučuje dočasně zatížit proti nadzvednutí. Na položenou a jinak nechráněnou fólii smí kladeči vstupovat jen v nejnutnější míře, při chůzi došlapovat na celé chodidlo. Na fólii nesmí být skladován materiál. Fólie položená na plochu musí být ihned překryta další vrstvou betonové mazaniny tloušťky minimálně 50 mm (pojezdové plochy minimálně 80 mm) schopnou ji ochránit proti mechanickému poškození. K této práci smí být použito pouze lehkých přepravních prostředků pojíždějících po fošnách, nebo jiných výztuhách vylučujících bodové přetížení popřípadě poškození fólie.

7.14.1.2 Pokládání fólie na svislých plochách

U pásů vedených vodorovně se nábal postupně rozvíjí a u horního okraje v předepsaných roztečích upevní k podkladu pomocí kotvicích prvků. Při kladení dvou a více pásů nad sebou se postupuje zdola nahoru. Okraj fólie horní překryvá fólii spodní. Spodní pás fólie se upevňuje pomocnými spoji v roztečích po 1 m minimálně 105 mm od svého horního okraje (čtvrtý nopek) Konečné upevnění v předepsaných roztečích (max. po 300 mm) se provede v místech přesahu obou fólií na druhém nopku od spodního okraje horního pásu fólie.

U pásů vedených svile se tyto rozvíjí shora dolů a kladou vedle sebe. Po kontrole dosednutí vzájemného spoje se pásy upevní u horního okraje s vynecháním místa přesahu, ve kterém se provede ukotvení až po útěsnění celého spoje. Volný spodní okraj fólie se podle potřeby zajistí proti nadzvedávání, např. přihnutím zeminy. Je-li profilovaná fólie použita v kombinaci s jinou hydroizolací jako ochranná vrstva, nesmí být kotvena v místech, kde hlavní hydroizolační vrstva plní svou funkci.

8. ZPŮSOBILOST PRACOVNÍ ČETY IZOLATÉRŮ

8.1 ODBORNÁ ZPŮSOBILOST

Pracovní četa vytvářející izolace systému FATRAFOL-H musí být tvořena zkušenými a specializovanými izolátyry seznámenými s tímto předpisem a jeho zásadami.

8.2 DOPORUČENÉ VYBAVENÍ PRA COVNÍ ČETY

Elektrické přístroje
- ruční horkovzdušný svařovací přístroj s plochou hubicí šířky 40 mm a 20 mm (doporučený typ LEISTER TRIAC) - pro PVC-P fólie a fólie z modifikovaných polyolefinů,
- horkovzdušný pojízdný svařovací automat (doporučený typ LEISTER VARIANT pro PVC-P nebo Leister X-92, X-84 a Twiny pro PE-HD i PVC-P),
- svařovací přístroj s horkým klinem - především pro fólie z PE-HD,
- extruzní svařovací přístroj - jen pro fólie z PE-HD,
- přiklícevá vrtáčka s vidlovými vrtáky do zdiva průměru 6 mm a 8 mm,
- vysavač na vodu.

Pracovní nářadí a pomůcky
- koště,
- skládací metr,
- ocelové pravítko,
- mastná křída,
- nůž s háčkem,
- nůžky,
- ruční pryzové přítačné válečky,
- přípravek pro zatloukání rozpěrných nýtů (ocelová trubka Js 4-5 mm, délky cca 150 mm),
- kladivo,
- dírkovač průměru 10 mm a 13 mm,
- ocelový sekáč,
- nůžky na plech ruční,
- stěrky na tmel,
- mechanická vytlačovací pistole na tmel v kartuších,
- PE lahvičky s výtokovou trubičkou,
- pyle z PE na odpadky.

Ochranné pomůcky
- pracovní oděvy,
- obuv s měkkou podešívou odpovídající zásadám BOZP,
- kožené ochranné rukavice,
- nákoleníky,
- brýle proti slunci s UV filtrem,
- čepice se štítkem,
- respirátor.
9. BEZPEČNOST A OCHRANA ZDRAVÍ

Při provádění izolací systému FATRAFOL-H je třeba dodržovat zejména všechny obecné bezpečnostní, hygienické a požární předpisy pro práce na stavbách.

Připojení a provoz užívaných elektrických přístrojů (svářečky, vrtáčky apod.) musí být v souladu s předpisy pro rozvod elektrické energie a provoz elektrospotřebičů na stavbách a s pokyny jejich výrobcrů.

Při svařování horkým vzduchem vznikají exhalace, které jsou při vysokých koncentracích zdraví škodlivé, proto je třeba při nutnosti svařování v uzavřeném prostoru zajistit jeho dokonalé odvětrávání.

Zvláštní pozornost vyžaduje manipulace s tetrahydrofuranem (THF) a zálivkovou hmotou (roztok PVC a přísad v THF). THF je hořlavina I. třídy a vyžaduje proto zachování všechn obvyklých bezpečnostních opatření pro tuto kategorii látek:

■ skladování pouze v náležitě upraveném a označeném skladu hořlavin,
■ zákaz kouření a přístupu s otevřeným ohněm při práci,
■ zákaz používání v uzavřených prostorách.

Hořící THF lze hasit kromě běžných hasicích přístrojů i velkým množstvím vody.

Izolatéři pracující s PVC fóliemi musí být předem poúčeni, že mokrý povrch fólie je značně kluzký a vyžaduje zvýšenou opatrnost při přecházení po položené fólii (i po ranní rose) - nebezepečí úrazu při pádu!

Při práci ve výškách je nutno dodržovat ustanovení příslušných bezpečnostních předpisů (vyhláška č. 324/90 Sb. - Práce ve výškách).
10. ZÁSADY KONSTRUKČNÍHO ŘEŠENÍ
CHARAKTERISTICKÝCH DETAILŮ

10.1 PŘEHLEDO DETAILŮ:

Obr. 1: Charakteristické souvrství izolačního povlaku systému FATRAFOL-H včetně provedených spojů

Obr. 2a: Ukončení svislé izolace pod pohledovou ochrannou vrstvou

Obr. 2b: Ukončení svislé izolace pod omítkou

Obr. 3: Dotěsnění vnitřních koutů a zákoutí

Obr. 4: Dotěsnění vnějších koutů a zákoutí

Obr. 5a: Etapové napojení svislé izolace na vodorovnou - I. etapa

Obr. 5b: Etapové napojení svislé izolace na vodorovnou - II. etapa

Obr. 6a: Přechod z vodorovné izolace na svislou s montážním přikotvením

Obr. 6b: Přechod z vodorovné izolace na svislou - zesílení přídavným pásem fólie

Obr. 7a: Etapové napojení svislé izolace na vodorovnou izolaci stropní konstrukce - I. etapa

Obr. 7b: Etapové napojení svislé izolace na vodorovnou izolaci stropní konstrukce - II. etapa

Obr. 8: Použití profilované fólie jako odvětrávací vrstvy při vysokém radonovém riziku v prostředí zemní vlhkosti

Obr. 9: Použití profilované fólie jako mechanické ochrany a drenážní vrstvy

Obr. 10: Utěsnění trubních prostupů izolačním povlakem s plášťovou troubou

Obr. 11: Utěsnění trubních prostupů s pevnou a volnou přírubou

Obr. 12a: Řešení prostupu potrubí z materiálu svářitelného s izolační fólií

Obr. 12b: Řešení prostupu potrubí z ostatních materiálů nesvářitelných s izolační fólií

Obr. 13a: Úpravy izolace v rovině dilatační spáry - vyplněná spára s pohyby do 10 mm

Obr. 13b: Úpravy izolace v rovině dilatační spáry - nevyplněná spára s pohyby do 10 mm

Obr. 13c: Úpravy izolace v rovině dilatační spáry - spára s pohyblem nad 10 mm

Obr. 13d: Úpravy izolace v rovině dilatační spáry - spára s pohyblem nad 10 mm

Obr. 14: Napojení izolačního povlaku na kovovou konstrukci pomocí pásnice

Obr. 15a: Opracování výztuže - izolace proti zemní vlhkosti

Obr. 15b: Opracování výztuže - izolace proti vodě prosakující nebo stékající

Obr. 16a: Ukončení izolace fólií Technodren na stěně ukončovací lištou

Obr. 16b: Ukončení izolace fólií Technodren na lehkém obvodovém plášti

Obr. 17: Opracování světlíku na sutéřinním zdivu - detail „anglického dvorku“

10.2 LEGENDA:

1 izolační fólie
2 separační a ochranná textilie ze syntetických vláken
3 horkovzdušný svar
4 poplastovaný plech
5 ocelová stahovací páska
6 ocelový výztužný prut, ocel, litina
6a deska z PE-HD min. tl. 5 mm
7 polyuretanový tmel
8 pojistná zálivka Z-01
9 fixační mřížka
10 fólie TECHNO DREN 0815
11 profil NOVOPLAST 1863 č.h. 1557
12 drenážní trubka
13 kotvicí prvek
14 ukončující profil omloty
15 sypaná zemina
16 zdivo
17 povrchová úprava, obkladová deska
18 ochranný cementový potěr, beton
19 extrudovaný polystyren
20 pohledová ochranná vrstva
21 drenážní kamenivo
22 tvarovka KUŽEL druž 10
23 tvarovka VLNOVEC druž 11
24 ochranná fólie z PE
25 odvětrávací lišta PVC
26 těsnicí podložka
27 sendvičový obvodový panel
28 anglický dvorek - světlík